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Summary. Oscillators have been a research focus in many
disciplines such as electronics and biology. The time keep-
ing capability of oscillators is best described by the scalar
quantity called phase. Phase computations and equations
describing phase dynamics have been useful in understand-
ing oscillator behavior and designing oscillators least af-
fected by disturbances such as noise. In this talk, we present
a unified review of phase models for oscillators assimilating
the work that has been done in electronics and biology for
the last seven decades.

Oscillatory behavior is seen in physical and man-
made systems, where their time keeping ability is
important. Oscillators are particularly encountered in
or introduced into biological and electronic systems
where the adverse effects of disturbances such as
noise degrade their time keeping and synchronization
capability.

The dynamical behavior of oscillators is best de-
scribed and analyzed in terms of the scalar quan-
tity, phase. Of the pertaining notions in the literature,
the most straightforward phase definition is obtained
when a planar oscillator is expressed in polar coordi-
nates, with amplitude and polar angle as the state vari-
ables. The usefulness of the polar angle as phase does
not generalize to higher dimensional oscillators. In
the general case, it is our conviction that the most rig-
orous and precise definition of phase is the one based
on the so-called isochrons of an oscillator [1–4]. The
notion of isochrons was first proposed by Arthur Win-
free [1, 3] in 1974, who has also coined the term. It
was later revealed that isochrons are intimately re-
lated to the notion of asymptotic phase in the theory
of differential equations [5,6]. The isochron theoretic
phase of a free-running oscillator is simply time it-
self. Such an unperturbed oscillator serves as a per-
fect time keeper if it is in the process of converging
to a limit cycle, even when it has not yet settled to a
periodic steady-state solution. Perturbations make the
actual phase deviate from time, due to the degrading
impact of disturbances on the time keeping ability.

Phase is a quantity that compactly describes the
dynamical behavior of an oscillator. One is then in-
terested in computing the phase of a perturbed oscil-
lator. If this can be done in a semi or fully analytical
manner for a practical oscillator, one can draw conclu-
sions and obtain useful characterizations in assessing

the time keeping performance. Indeed, we observe in
the literature that, in various disciplines, researchers
have derived phase equations that compactly describe
the dynamics of weakly perturbed oscillators [2,7]. It
appears that a phase equation for oscillators has first
been derived by Malkin [8] in his work on the re-
duction of weakly perturbed oscillators to their phase
models [2], and the same equation has been subse-
quently reinvented by various other researchers in
several disciplines [1, 7, 9]. This phase equation has
been used in mathematical biology to study circadian
rhythms and coupled oscillators in models of neuro-
logical systems [1, 2, 10], and in electronics for the
analysis of phase noise and timing jitter in oscilla-
tors [7,11,12]. The acclaimed phase equation is a non-
linear but scalar differential equation. As such, it is
the ultimate reduced-order model for a complex non-
linear dynamical system. Its scalar nature and the spe-
cific form of the nonlinearity in this equation makes it
possible in some cases to solve, or characterize the so-
lutions of, this equation in (semi) analytical form, e.g.,
in the investigation of synchronization of coupled os-
cillators [2, 9] and in characterizing phase noise in
electronic oscillators with stochastic perturbations as
models of electronic noise sources [7, 13].

In this talk, we present a unified review of phase
models for autonomous oscillators assimilating the
work that has been done on oscillator analysis in both
electronics and mathematical biology during the past
seventy years. We first review the notion of isochrons,
which forms the basis for the generalized phase no-
tion for an oscillator. We then present an overview
of techniques for computing local approximations for
the isochrons of an oscillator [4, 14]. Next, we de-
scribe phase models and phase computation schemes
based on local approximations of isochrons, for con-
tinuous periodic (single-frequency) oscillators [15],
continuous quasi-periodic (multi-frequency) oscilla-
tors [16], as well as for discrete molecular oscilla-
tors [17, 18].
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