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Summary. Detailed, high-fidelity electromagnetic simula-
tions entail a significant computational cost, and this cost
may be managed by efficient use of modern computational
resources. Modern many-core architectures pose a chal-
lenge by being both more diverse and more complicated
than conventional computers. This contribution presents strate-
gies and software packages based on run-time code gen-
eration that help deal with this emerging complexity. We
demonstrate their use and effectiveness by applications to
discontinuous Galerkin time-domain and integral-equation-
based frequency-domain EM simulations.

1 Introduction

Graphics processing units (GPUs) and many-core ma-
chines have enjoyed tremendous impact in recent years,
because their use has brought about significant cost
reductions for a number of numerical methods. Yet,
gains from the use of many-core machines have not
been uniformly distributed across methods. Further,
adoption of these machines, despite their advantages,
has been far from universal. These two facts hint at
underlying issues that must be resolved before the
promise of these recent hardware advances is realized.

The first issue is that the choice of computational
method has thus far often been made in complete ig-
norance of machine concerns. Examples of this are
methods that may satisfy some theoretical optimality
criterion, but which are outrun in practice by methods
that make some concessions to the hardware and are
slightly suboptimal in theory. The consequence of this
is that computational methods and their implementa-
tion have merged into one joint design space that can-
not easily be split into separate concerns.

The second issue is that this new hardware re-
quires specialist knowledge to program. Not only must
the programmer be aware of the sometimes intricate
semantics of parallel programming models–she must
also understand the performance implications of each
of the (often many) semantically equivalent ways of
expressing a single computation. And even if the pro-
grammer possesses some intuition on hardware re-
sponse to different coding techniques, any given com-
putational task may still require trying numerous ap-
proaches to achieve good machine utilization. Worse,
this procedure has some likelihood of needing to be
repeated when new generations of the same hardware,

or especially when a different vendor’s hardware is to
be used. All this translates to extra cost, leading many
potential users to forgo the potential execution time
gains of many-core implementation.

2 Transformational programming

Unlocking the benefit of GPUs for a majority of users
is a thorny problem, to which many solutions have
been proposed–too many to even begin to provide
a concise overview in this setting. In 2009, we pio-
neered one very simple starting strategy that has en-
joyed a measure of success in the marketplace, in
the form of our packages PyCUDA and PyOpenCL,
whose use will be briefly discussed. A cornerstone of
this strategy was to enable run-time code generation
(‘RTCG’) [1]. RTCG allows the user to apply more in-
telligence than customarily supplied by compilers to
process and reason about the source code that carries
out a desired computation. The basic flow of infor-
mation in this setting is illustrated in Fig. 1. In other
words, our tool provided, in some sense, the smallest
possible stepping stone for the creation of additional
tools.

Our current work reapplies this recipe of creating
the smallest possible tool at the next higher level of
abstraction, within the field of code generation. We
start from the assumption that a computational task
is given as a mathematical statement in index-based
form, such as

c[i,j] = sum(k, a[i,k]*b[k,j]).

Further, a set of bounds on the loop variables (i, j,
and k in this case) is given as an intersection of affine
constraints, in the notation of the isl integer set library
[4]:

[n] -> {[i,j,k]: 0<=i,j,k<n},

where we note that n, the matrix size, enters as a
run-time-variable parameter. Starting from this math-
ematical statement of the desired operation (along
with declarations specifying data storage formats and
types), the user may then issue transformations that
make the generated code more suitable for a certain
piece of target hardware by better respecting gran-
ularities such as machine vector widths and appro-
priate sizing of prefetch buffers. Importantly, each
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Fig. 1. Operating principle of GPU run-time code generation.

such transformation is guaranteed to preserve the op-
erational semantics meaning of the original, untrans-
formed kernel–but, given the right transformations,
may execute far faster on a given piece of hardware.
Available transformations include strip-mining, loop
unrolling, parallelization, prefetching, cache manage-
ment, and many more.

Like our previous tools, this code generator, called
‘loo.py’, cannot solve all problems encountered in
making GPU programming accessible. Nonetheless,
we claim that what it provides is useful:

• Increase the trial rate of an expert programmer.
Manually carrying out the transformations allowed
by the tool is a tedious, error-prone task. Finding
and correcting these errors takes time that can be
put to better use.

• Provide a stepping stone on which more tools can
be built. Loo.py is deterministic and does not at-
tempt to guess or be intelligent on the user’s be-
half. Tools with such intelligence can be built on
top of loo.py with relative ease.

• Facilitate performance portability. Since loo.py
clearly distinguishes the description of the desired
computation from the transformations achieving
hardware specialization, this latter part may be
changed or adapted to new hardware without hav-
ing to revisit the basic computational goal.

• Channel thought through language design. The
tool enforces a clear separation between math-
ematical and implementation concerns, even if
both influence each other in a conceptually more
abstract design space.

In proposing this tool, we have built upon experience
gained from earlier work [2] on the type of transfor-
mations necessary in GPU programming. In the next
section, we discuss how loo.py conceptually and fac-
tually supersedes this research.

While loo.py bears some similarity to prior ef-
forts in transformational programming (e.g. CUDA-
CHiLL [3]), it is novel because, first, it is not a source-
to-source translator, but instead views transformations
as first-class objects in its language, and second, it in-
tegrates into an existing ecosystem of GPU scripting
tools centered on PyOpenCL.

3 Evaluation and Conclusions

We evaluate our tool by applying it to time-domain
EM simulations using discontinuous Galerkin meth-
ods as well as to singular quadrature tasks originat-
ing from electromagnetic problems in the frequency-
domain, demonstrating the effectiveness of the lan-
guage exposed along with its applicability to real-
world tasks in electromagnetic simulation. We further
show performance results supporting the notion that
high-performance codes on a broad variety of hard-
ware can be reached by the provided transformations.

In providing loo.py, we hope to build a bridge
between computer science innovation in tool build-
ing, and application scientist needs. We hope that the
tool may provide a basis for innovation and discus-
sion in methods for producing both prototype- and
production-grade EM solvers with the least possible
effort.
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