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Summary. In PDE constrained optimization, physical pa-
rameters need to be determined so that some objective func-
tion is minimized. We assume here an objective function
that depends on the output of a dynamical system, mod-
eled by a discretized PDE. Krylov-Padé model reduction for
computing the output can significantly decrease the compu-
tation time. In addition, gradients are well approximated,
which allows using gradient based optimization on the re-
duced model. We show numerical results for different meth-
ods embedded in line search and trust region methods for
benchmark problems from structural engineering.

1 Introduction

Given a dynamical system described by the follow-
ing system of second order ordinary differential equa-
tions:

(K + sC+ s2M)x = f u(s) (1)
y(s) = dT x

where K, C, and M are respectively the stiffness,
damping and mass matrices, are sparse, and have size
n× n with n large. The vector f is input and d the
output vector. Let the matrices depend on parameters
γ ∈ Rp, then we wish to determine the value of γ that
minimizes one of the following functions

g2(γ) =
∫

ωmax

ωmin

|y(iω)|2dω (2)

g∞(γ) =
ωmaxmax
ωmin
|y(iω)| (3)

The evaluation of g is expensive. We will therefore
define a reduced model of (1) that approximates y well
and is, because of its size, much cheaper to evaluate.
The results of this paper are a summary of the full
papers [4] [3]. In the remainder of the paper we use
A(s) = K + sC+ s2M.

2 Krylov-Padé model reduction

One of the most popular model reduction techniques
for vibrations are Krylov methods. For second order
problems as (1), the SOAR method [1] is preferred.
This method builds the matrices Vk,Wk ∈ Cn×k with
k � n. The columns of Vk span the derivatives of

orders 0, . . . ,k− 1 of A−1(s) f around s = s0. Simi-
larly, the columns of Wk span the derivatives of orders
0, . . . ,k− 1 of A−∗(s)d around s = s0. The reduced
model is defined as

(K̂ + sĈ+ s2M̂)x̂ = f̂ u(s) (4)

ŷ(s) = d̂T x̂

with K̂ =W ∗k KVk, Ĉ =W ∗k CVk, and M̂ =W ∗k MVk, and
the vectors f̂ = W ∗k f and d̂ = V ∗k d. It can be proven
that the first 2k derivatives of y and ŷ evaluated at
s = s0 match. This property is also known as moment
matching.

In order to evaluate g for a given γ = γ?, we first
build the corresponding reduced model ŷ using the
two-sided SOAR method for the given value γ?. The
matrices K̂, Ĉ, and M̂ then also depend on γ . We hence
have an interpolatory reduced model around the inter-
polation point γ?. It can be shown [4] that ∇γ y(γ?)
and ∇γ ŷ(γ?) match the first k derivatives around s0.
We may thus conclude that two-sided SOAR models
compute accurate approximations to y and its gradient
s around s0 and for fixed γ .

Then, g is computed using ŷ. For g2, we use a
quadrature rule, and for gmax we use a global opti-
mization method consisting of a coarse grid search
and local improvement by a quasi Newton method [4].
The gradient is computed accordingly.

Let us assume p = 1, i.e., γ is a single parame-
ter. Another method that we will use for optimization
is the PIMTAP method [2]. This is also a moment
matching method for s, where in addition, also mo-
ments are matched for γ , as well as cross moments,
i.e. the derivatives ∂ j+iy/∂ s j∂γ i. The reduced model
can then be used to efficiently evaluate y for all s near
s0 and γ near γ?.

3 Line search optimization

In general, (2) is a nonconvex optimization problem.
The default method for such problem is problably the
damped BFGS method. In iteration j, the j+1st iter-
ate is computed as

γ j+1 = γ j +α j p j , H j p j =−∇γ g(γ j)

where H j is the BFGS approximation of the true Hes-
sian of g. For a nonconvex function, we determine α j



2

so that the Armijo condition is satisfied. This is a con-
dition that forces sufficient decrease of the objective
function in order to achieve convergence. In general, a
number of γ j+1’s have to be computed for a sequence
of values of α j’s until the Armijo condition is satis-
fied. This is called backtracking. For each new value
of γ , we build a new reduced model using the SOAR
method.

Since γ j+1 lies on a line in the parameter space,
g(γ j+1) can be efficiently computed when we have a
reduced model for both s and γ j +α p j for α in some
interval. This can be achieved by a reduced model us-
ing the PIMTAP method.

We used damped BFGS accelerated by SOAR
or PIMTAP for minimizing the vibrations in a con-
crete floor subjected to road noise by determining
the best parameters of the floor damper [4]. In this
case, there were two parameters: the stiffness and
the damping of the floor damper. We see from Ta-
ble 1 that for the optimization of g2, which is usu-
ally smooth and differentiable, the two-sided SOAR
method reaches the best performance, while the min-
imization of g∞, which is not a smooth function and
therefore requires many backtracking steps, is more
efficient using PIMTAP. We also conclude that g∞ op-

g2 g∞

Direct 7,626 41,069
SOAR 179 1,104
PIMTAP 360 417

Table 1. Timings in seconds for the damped BFGS method
for the optimization of a concrete floor damper

timization is harder than g2 optimization, because g∞

is a nonsmooth function.

4 Trust region based optimization

In [3], we discussed trust region approaches exploit-
ing the effort done to build a reduced model. In the
SOAR approach, we used the reduced model (4) for
evaluating g for a fixed γ = γ j. The idea here is sim-
ple: since ∇γ g is well approximated at γ j, the reduced
model approximates g well for other values of γ , if g
is Lipschitz continuous at γ j. In contrast to the SOAR
approach, we use (4) as a parametric model in s but
also in γ , in a trust region setting. The difficulty is that
this reduced model is an extrapolation and may there-
fore quickly lose its accuracy. Therefore, we devel-
oped a simple error estimation to control the quality
of the reduced model. Since the Hessian is not nec-
essarily well approximated, we rely again on a quasi-
Newton method.

We then defined a trust region method, based on
the error estimation of the reduced model. The trust

region contains the set of parameters γ where the re-
duced model is accurate. An error-based trust region
approach is then used, relying on Cauchy points to
guarantee convergence of the method. The solution of
the trust region subproblem is cheap, since it fully re-
lies on the reduced model. However, in order to have
a provably convergent method, we may sometimes re-
quire additional reduced models to refine the trust re-
gion [3].

Table 2 compares the SOAR approach and the
trust region approach for a model of a footbridge with
four dampers. The eight parameters that model these
dampers have to be determined so that the vibration
in some point on the bridge is minimized. Note that
only two reduced models are required, while 70 are
needed for the SOAR approach. This leads to an im-
portant reduction of the computation time. However,
it should be noted that the error estimation of g using
the reduced model is much more expensive than eval-
uating the reduced model. This explains why there is
no speed-up of a factor 35.

Direct SOAR Trust region
Time (s) 70×540 897 194
iter. 70 70 2

Table 2. Results for the footbridge problem
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