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Summary. An hp-adaptive Discontinuous Galerkin method
for time-domain electromagnetics problems is proposed.
The method allows for arbitrary anisotropic refinements in
the approximation order p and the mesh step size h regard-
less of the resulting level of hanging nodes. The adaptation
process is guided by so-called reference solutions [14, 15],
which are employed for estimating the solution error and
finding the best type of refinement.

1 Introduction

In this article, we are concerned with solving the
Maxwell equations for electromagnetic fields with ar-
bitrary time dependence in a three-dimensional do-
main Ω ⊂ R3. They read

∇×E(x, t) = − ∂

∂ t
µ(x)H(x, t), (1a)

∇×H(x, t) = − ∂

∂ t
ε(x)E(x, t)+J(x, t), (1b)

with the spatial variable x ∈Ω and the temporal vari-
able t ∈ [t0,T ] ⊂ R subject to boundary conditions
specified at the domain boundary ∂Ω and initial con-
ditions specified at time t0. The electric and magnetic
field vectors are denoted by E and H, J denotes the
electric current density. In (1), we assumed resting
heterogeneous, linear, isotropic, non-dispersive and
time-independent materials. The magnetic permeabil-
ity and dielectric permittivity µ and ε for this case are
scalar values depending on the spatial position only.

For discretizing (1), we employ the discontinu-
ous Galerkin (DG) method [1, 2]. Nowadays, the DG
method has gained wide acceptance as a numerical
method, which combines the key features of accuracy
and flexibility. Its flexibility stems from the highly
localized character of the numerical approximation.
This renders the method specially suited for time-
domain problems as well as for applying adaptive
mesh refinement. In particular, the method can eas-
ily deal with meshes with hanging nodes as stated
in [3], which makes it particularly well suited for hp-
adaptivity, i.e., the adaptation of the computational
mesh regarding the local mesh step size h and the lo-
cal approximation order p.

There is a well established body of literature on
the DG method for various types of problems avail-

able. It has been thoroughly investigated by several re-
search groups (see e.g. [3–5] and references therein).
Concerning Maxwell’s equations in time-domain, the
DGM has been studied in particular in [5–8].

This paper focuses on error controlled dynamic
hp-adaptation. In parts, it is a continuation of our
work in [13], where a general formulation of the
DGM on non-regular hexahedral meshes was intro-
duced. The first published work on h-, p- and hp-
adaptivity within the DG framework is presumably
[9], where the authors consider linear scalar hyper-
bolic conservation laws in two dimensional space. For
a selection of other publications see [10–12] and the
references therein. Our formulation allows for arbi-
trary anisotropic h- and p-refinements with very re-
laxed demands on the level of hanging nodes.

2 Automatic and dynamic mesh
adaptation with the DG method

The space and time continuous electromagnetic fields
are approximated on a tesselation T of the domain
of interest Ω . The approximation of the electric field
local to the element with index i reads

Ei(x, t) = ∑
p

ep
i (t)ϕ

p
i (x), x ∈Ti (2)

with the polynomial basis functions ϕ(x) of order
p ∈P = {0, ..,P} and the time-dependent vector of
coefficients e. The magnetic field is approximated re-
spectively.

It is specific to the DG method that the basis func-
tions are defined with element-wise compact support.
As a consequence the individual element-local ap-
proximations are not trivially connected, which in-
herently leads to a globally discontinuous approxima-
tion. Element communication is established via the
so-called numerical interface fluxes only, which ap-
pear in the form of element surface integrals in the
weak formulation of (1) (see e.g. [13] for details).
This high degree of localization turns mesh adapta-
tion into a purely element-local operation.

By defining proper finite element spaces associ-
ated with refined or reduced elements of h-, p- and
hp-type the best approximation in the L2-sense, f ∗, of
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Fig. 1. Cut view of the electric field magnitude having a 3D
Gaussian distribution (left) and corresponding anisotropi-
cally refined hp-mesh for an error tolerance of 10−9 in the
L2 norm. The mesh view makes use of the common tensor
product order visualization technique [14].

a DG approximation f given on an existing hp-mesh
is obtained by the orthogonal projection operator Π p

f ∗ = ∑
p

Π
p( f )Ti ϕ

p
i = ∑

p

(
ϕ

p
i , f
)
Ti(

ϕ
p
i ,ϕ

p
i

)
Ti

ϕ
p
i , (3)

where (u,v)Ti denotes the inner product
∫
Ti

uvdx on
the element Ti. In [13] it is shown that this projection
can be performed very efficiently, and that it guaran-
tees stability by respecting the electromagnetic energy
of the current field solution as a strict upper limit.

In order to perform automatic mesh adaptation,
the approximation error has to be estimated in an
element-wise fashion in a first step. In [13] an error
estimator based the size of the interelement jumps of
the DG solution was proposed. In a second step the
best type of adaptation, i.e., h-, p- and hp-refinement
and/or reduction, has to be determined. This informa-
tion is inferred from a local regularity estimation.

In this contribution, we apply the concept of ref-
erence solutions [14, 15]. A reference solution is a
numerically computed approximation, which is as-
sumed to be significant more accurate than the present
approximation. This can be achieved by performing
one isotropic h-refinement combined with increasing
the approximation order by one on the element un-
der consideration. The error of the present solution
is computed with respect to the reference solution,
which is also employed for finding the best refinement
out of a list of candidates. Figure 1 shows an exam-
ple of an anisotropically refined hp-mesh yielding an
approximation error below 10−9 in the L2-norm. We
adopted the common tensor product order visualiza-
tion technique of [14, 15], where the color of a trian-
gle including, e.g., an x-directed edge visualizes the
order Px.
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