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Summary. As optical devices get much smaller than the
wavelength of the operating light, local material models for
metallic structures like the Drude model and the Lorentz
model become inadequate to describe accurately the light-
matter interactions. To overcome this, a sophisticated non-
local hydrodynamic Drude model has been proposed. We
discuss a weak formulation of the nonlocal hydrodynamic
Drude model in the frequency domain and apply the finite
element method for scattering and propagating mode prob-
lems to demonstrate the dramatic impact of non-local ef-
fects on the device characteristics.

1 Introduction

The dispersive material properties of plasmonic struc-
tures are usually described by the Drude model and
the Lorentz model. These material models take into
account spatially purely local interactions between
electrons and the light. Recent investigations have
shown that these local models are inadequate as the
size of the plasmonic structure becomes much smaller
than the wavelength of the exciting light [1, 2]. To
overcome this, a sophisticated nonlocal material model
is required, such as the hydrodynamic model of the
electron gas [3].

The hydrodynamic model is formulated by cou-
pling macroscopic Maxwell’s equations with the equa-
tions of motion of the electron gas. This gives rise to a
hydrodynamic polarization current. Considering only
the kinetic energy of the free electrons, it yields the
nonlocal hydrodynamic Drude model, which is given
in frequency domain by a coupled system of equations
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where E is the electric field, JHD is the hydrodynamic
current, εloc is the relative permittivity due to the
local-response, β 2 is a term proportional to the Fermi
velocity, γ is the damping constant, and ω2

p = e2n0
ε0me

is the plasma frequency of the free electron gas, c.f.
[6, 7].

The hydrodynamic current is non-zero only in a
region Ωm filled with metal. We assume that Ωm is
bounded and contained in the computational domain
Ω . Transparent boundary conditions such as PML
(Perfectly Matched Layers) are required to model the
coupling of the light field with the exterior domain
[9].

2 Weak formulation

Appropriate Sobelev spaces for the electric field E
and the hydrodynamic current JHD are H(curl,Ω) and

H0(div,Ωm) = {JHD ∈ (L2(Ωm))
3 |

∇ ·JHD ∈ (L2(Ωm))
3, n ·JHD = 0 on ∂Ωm},

respectively. This restricts the hydrodynamic current
to the metallic domain, and imposes a zero normal
component on the boundary of the metal.

One can use textbook Nédélec finite element spaces
to discretize H(curl,Ω) and H0(div,Ωm), leading to
a consistent discretization of the problem, fulfilling
the required boundary and material interface condi-
tions [8, Ch. 5].

Special geometries such as z-invariant structures
or with a rotational symmetry, can be treated as in the
standard Maxwell case. This allows for the computa-
tion of plasmon-polarition waveguide modes of a z-
invariant structure on a 2D cross-section domain. In
this case it is assumed that the electric field and the
hydrodynamic current depend harmonically on z :

E(x,y,z) = E(x,y)eikzz,

JHD(x,y,z) = JHD(x,y)eikzz

Replacing all z−derivatives in the coupled system (1), (2)
with ikz yields a quadratic eigenvalue problem for the
propagation constant kz.

3 Numerical examples

3.1 Cylindrical plasmonic nanowires

We validate the present approach by simulating a test
case of cylindrical nanowire as in [1], for which an
analytical solution based on Mie theory is available.

Consistent with the observations in [1], peaks due
to nonlocal interactions are present only beyond the
bulk plasma frequency, c.f. Fig. 1. The positions of
the surface plasmon resonance and the nonlocal hy-
drodynamic Drude resonances agree very good with
the analytical Mie results.
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Fig. 1. Simulation results for the normalized scattering
cross section σext of the cylindrical nanowire in [1]. The
curves show comparison of the numerical finite element so-
lutions for the nonlocal and the local hydrodynamic model
with the corresponding analytical solutions based on Mie
theory.

3.2 V groove channel plasmon-polariton
resonances

To demonstrate capability of the method to handle
an arbitrary shaped geometry, we simulate a channel
plasmon-polariton (CPP) waveguide with a V groove.
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Fig. 2. Effect of the nonlocal material response on the reso-
nance modes of V groove CPP waveguide. The waveguide
parameters are: l1 = 7 nm, w1 = 1 nm, a groove of length
l2 = 0.7 nm, width w2 = 0.7 nm is placed in the center.
The material and the hydrodynamic parameters are taken as
in the case of cylindrical nanowires in [1]. The sharp cor-
ners of the waveguide are rounded with corner radius of 0.1
nm. Resonances are excited by a unit amplitude, x-polarized
plane wave propagating in the direction of minus y-axis.

We consider a V groove configuration as shown
in clip of Fig. 2. First we simulated it for the local
Drude model. As seen from the dashed curve in Fig. 2,
several resonance modes are excited. When this set-
ting is simulated with the nonlocal Drude model,
the mode spectrum changes significantly (solid-line
curve). Some of the local Drude model modes such as
at ω/ωp = 0.306332 and ω/ωp = 0.80262 experience
small shifts towards high frequency, whereas others

like at ω/ωp = 0.466485 and ω/ωp = 0.605087 un-
dergo noticeable shifts towards high frequency. As
in the case of the cylindrical nanowires, also for the
V groove waveguide a completely new set of reso-
nances appear at the frequencies beyond the plasma
frequency. For the present simulation setting, some
of these hydrodynamic resonance modes are more
prominent than the higher order waveguide resonance
modes. It gives the indication that the modal proper-
ties of the CPP waveguides change significantly with
the inclusion of nonlocal effects.
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