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Summary. We present some new results for model order
reduction of Maxwell’s equations using an adaptive-order
rational Arnoldi method. In this context, we introduce a new
adaptive choice of expansion points.

1 Introduction

In view of the increasing frequency range and the pro-
gressing miniaturization, the analysis of parasitic ef-
fects has become an important task for the develop-
ment of integrated circuits. The appearing phenom-
ena, e.g. crosstalk or signal delay, are usually mod-
elled using Maxwell’s equations.
Since high-dimensional model problems are often nec-
essary for accurate simulations, model order reduc-
tion techniques are an important tool for the proper
and fast analysis of these phenomena.

1.1 Model Order Reduction

We will apply model order reduction for linear time-
invariant descriptor systems

E ẋ(t) = A x(t) + Bu(t),
y(t) = C x(t),

(1)

whereE ,A ∈R
N×N, B ∈R

N×m andC ∈R
p×N. Fur-

thermore,u(t) ∈ R
m andy(t) ∈ R

p denote the input
and the output of the descriptor system, respectively.
In general, descriptor systems are associated with the
transfer function

H (s) = C (sE −A )−1
B.

The reduced order model will be obtained from the
projection of the original model (1) onto a proper sub-
spaceVn ∈ R

N×n with n≪ N, i.e.

VT
n EVn ˙̃x(t) = VT

n A Vnx̃(t)+VT
n Bu(t),

y(t) = CVnx̃(t).

The computation of the subspaceVn should result in a
small error

‖H (s)−H̃ (s)‖

in terms of a proper norm, whereH̃ (s) denotes the
transfer function of the reduced order model.

2 Adaptive Krylov subspace methods

The idea of Krylov subspace methods for model re-
duction, e.g. [4], results from the expansion of the
transfer function

H (s) =
∞

∑
j=0

Y( j)(si)(s−si)
j ,

whereS:= {s1, . . . ,sk} denotes a given set of expan-
sion points andY( j)(si) = C TX( j)(si) with

X( j)(si) =
[

−(siE −A )−1
E
] j
(siE −A )−1

B.

The orthogonal columns ofVn span the same subspace
as

[

X(0)(s1), . . . , X( j1)(s1), . . . , X( jk)(sk)
]

.

In [4], the authors present an adaptive choice for the
size of the Krylov subspacesX( j)(si) applying the ra-
tional Arnoldi method. AssumingY( j)(si) = Ŷ( j)(si)
for all j = 0, . . . , Ĵi−1 andsi ∈ S, the Krylov subspace
of the expansion pointsi ∈ Swith

max
si∈S

∣

∣

∣
Y(Ĵi)(si)−Ŷ(Ĵi)(si)

∣

∣

∣

is increased by one additional vector in each iteration
step. Here,̂Y( j)(si) denotes thej-th output moment of
the reduced order model.
The remaining problem of the adaptive-order ratio-
nal Arnoldi method (AORA) consists of the adequate
choice of the expansion points.

3 AORA with adaptive point selection

We will present a combination of the AORA method
and an adaptive expansion point selection. In detail,
from the subsequently computed reduced order mod-
els using the AORA method new expansion points are
determined, until a certain tolerance is reached. The
aim of the adaptive expansion point selection consists
of the computation of a reduced order model, which
offers a good approximation for the whole frequency
range.
For the definition of an adequate measurement of the
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error εm = ‖H (s)− Ĥn(s)‖, e.g. [3], we define the
approximation

ε̂m =
m

∑
l=1

2l−m‖Ĥl (s)−Ĥl−1(s)‖

‖Ĥl (s)‖
, (2)

whereĤk−1 andĤk denote transfer functions of re-
duced order models obtained from the AORA method.
Since this definition does not give a hint, whetherε̂m

remains small due to convergence or stagnation, we
will add one more expansion point in each iteration
step.

3.1 Point selection for Maxwell’s equations

Due to the high-frequency model problems with the
frequency rangeI = [ fmin, fmax] the first two ex-
pansion points are always defined vias1 = i fmin and
s2 = i fmax, wherei denotes the imaginary unit. Fur-
thermore, all expansion points are purely imaginary.
Initially, we usually chooses1 = i fmin,s2 = i fmax and
s3 = i( fmin + fmax)/2 as the first set of expansion
pointsS0.
In the (k+ 1)-th iteration step, the expansion point
sk+1 = 2π i fk+1 is determined, such that

sk+1 = argmax
s

‖Ĥk(s)−Ĥk−1(s)‖

‖Ĥk(s)‖
. (3)

Specially, the error during the(k+1)-th iteration step
(3) is computed alternatingly on the intervalsI1 =
[ fmin,( fmin+ fmax)/2] andI2= [( fmin+ fmax)/2, fmax].
If the error for the given intervalI1 or I2 is less than
a given toleranceδ > 0, we switch back to the other
interval and determine a new expansion point. This
new expansion point should have a certain distance to
previous expansion points from this interval.
Finally, the algorithm terminates, if the global approx-
imation errorε̂k reached a given tolerance or the er-
ror during the(k+1)-th iteration step (3) is less than
δ > 0 for both intervalsI1 andI2.

4 Numerical results

Some numerical results are presented for a coplanar
waveguide with a dielectric overlay, where the trans-
mission line is surrounded by two layers of multilayer
board. The single input, single output model problem
is enclosed in a metallic box and deals with the fre-
quency range[ fmin, fmax] = [0.6,3.0] GHz.
Here, the discretization of the model problem was car-
ried out using the Finite Integration Technique, e.g.
[5], with N = 32924 degrees of freedom.
Subsequently reduced order modelsHk(s) of dimen-
sionn= 30 have been computed untilε̂m< 10−12 ap-
plying the toleranceδ = 7.0 · 10−11. The expansion
points in thei-th iteration step are denoted bySi .
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Fig. 1. Relative error for reduced order model with different
sets of expansions points.

After four iteration steps the algorithm terminates due
to the introduction ofδ > 0, where

max
s

‖Ĥ (s)−H (s)‖ ≈ 1.5·10−11.

Future results will comprise of the application of in-
complete multilevel factorizations for the computa-
tion of Krylov subspaces, e.g. [1], using previous
preconditioning techniques for Helmholtz equations.
Furthermore, exisiting adaptive expansion point se-
lections, e.g. for machine tool simulations [2], will
be applied to Maxwell’s equations. In this context, a
combination with the results from section 3 might be
adopted.
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