Adaptive-order rational Arnoldi method for Maxwell’s equations
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Summary. We present some new results for model order? Adapti\/e Kry|o\/ subspace methods

reduction of Maxwell's equations using an adaptive-order

rational Arnoldi method. In this context, we introduce aneWThe idea of Krylov subspace methods for model re-

adaptive choice of expansion points. duction, e.g.[4], results from the expansion of the
transfer function

1 Introduction H(s) = Z)Y(j)(a)(s_s)j’
=

In view of the increasing frequency range and the pro-

gressing miniaturization, the analysis of parasitic ef-whereS:= {s,,...,s} denotes a given set of expan-
fects has become an important task for the developsion points and () (s) = #TX()(s) with

ment of integrated circuits. The appearing phenom- _

ena, e.g. crosstalk or signal delay, are usually mod- xU)(s) = [~(s& — &) 1&] (s& — 7)1 %.

elled using Maxwell’s equations.

Since high-dimensional model problems are often necthe orthogonal columns &, span the same subspace
essary for accurate simulations, model order reducas

tion techniques are an important tool for the proper - -

and fast analysis of these phenomena. {X(O)(Sl)’ XUy, X(Jk>(54<)} :

_ In [4], the authors present an adaptive choice for the
1.1 Model Order Reduction size of the Krylov subspace€) (s) applying the ra-
tional Arnoldi method. Assuminy ) (s) = Y()(s)
forall j =0,... ,Ji_1 ands € S, the Krylov subspace
of the expansion poirg € Swith

We will apply model order reduction for linear time-
invariant descriptor systems

EX(t) = FX(t) + Au(t), - .
1 . ~(3
Y(O) = Ex(0), @ max|¥¥(s) - Y (s)
NxN N N

whereé', o/ €R Xm’ % € R Mand¢’ € RPT. I_:ur- is increased by one additional vector in each iteration
thermore,u(t) € R™ andy(t) € RP denote the input gter Herey (i) (5) denotes thg-th output moment of
and the output of the descriptor system, respectivelythe reduced order model.
In general, dgscriptor systems are associated with they,o remaining problem of the adaptive-order ratio-
transfer function nal Arnoldi method (AORA) consists of the adequate

H(S) = C(s6 — @7)—1%. choice of the expansion points.

The reduced order model will be obtained from the
projection of the original mode[{1) onto a proper sub-3 AORA with adaptive point selection
spacevy € RNV with n < N, i.e.
S - N - We will present a combination of the AORA method
Vin EVRX(t) = Vi /VaX(t) + Vi BU(t), and an adaptive expansion point selection. In detail,
y(t) = EVaX(t). from the subsequently computed reduced order mod-
els using the AORA method new expansion points are
determined, until a certain tolerance is reached. The
aim of the adaptive expansion point selection consists
|5(s) —j?(s)n of the computation of a rgduced order model, which
B offers a good approximation for the whole frequency
in terms of a proper norm, wher#’(s) denotes the range.
transfer function of the reduced order model. For the definition of an adequate measurement of the

The computation of the subspageshould resultin a
small error



2

error & = || (s) — #(9)||, e.g. [3], we define the
approximation

N S~ A4S
1)

gm:

&)

)

=1

where#%_, and ./, denote transfer functions of re-
duced order models obtained from the AORA method
Since this definition does not give a hint, whetlgr
remains small due to convergence or stagnation, w
will add one more expansion point in each iteration
step.

3.1 Point selection for Maxwell’s equations

Due to the high-frequency model problems with the
frequency range? = [fmin, fmay the first two ex-
pansion points are always defined gia= i f i, and

s = ifmax Wherei denotes the imaginary unit. Fur-

Relative error for Coplanar waveguide
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Fig. 1. Relative error for reduced order model with different
sets of expansions points.

After four iteration steps the algorithm terminates due

thermore, all expansion points are purely imaginaryyq the introduction ob > 0. where

Initially, we usually choose; = ifiin, S2 = ifmaxand

3 = i(fmin+ fmax)/2 as the first set of expansion
pointsS.

In the (k+ 1)-th iteration step, the expansion point
Skr1 = 2mifyy 1 is determined, such that

1S~ A 1(9)]|
7S]

®)

Sk1 = argmax
Specially, the error during the -+ 1)-th iteration step
(3) is computed alternatingly on the interval§ =
[ fmin, (fmin+ fmax) /2] and-#2 = [( fmin+ fmax) /2, fmax-

If the error for the given interval; or %, is less than
a given toleranc@® > 0, we switch back to the other

msax||%2(s) —#(9)|| ~15-10 .

Future results will comprise of the application of in-
complete multilevel factorizations for the computa-
tion of Krylov subspaces, e.gl][1], using previous
preconditioning techniques for Helmholtz equations.
Furthermore, exisiting adaptive expansion point se-
lections, e.g. for machine tool simulatioris [2], will
be applied to Maxwell’s equations. In this context, a
combination with the results from sectibh 3 might be
adopted.

interval and determine a new expansion point. ThigcknowledgementThe work is supported by the German

new expansion point should have a certain distance
previous expansion points from this interval.

Finally, the algorithm terminates, if the global approx-
imation erroré reached a given tolerance or the er-
ror during the(k + 1)-th iteration step{3) is less than
d > 0 for both intervals#; and.#.

4 Numerical results

Some numerical results are presented for a coplanar

waveguide with a dielectric overlay, where the trans-
mission line is surrounded by two layers of multilayer

board. The single input, single output model problems3-

is enclosed in a metallic box and deals with the fre-
quency rangéfmin, fmay = [0.6,3.0] GHz.

Here, the discretization of the model problem was car®

ried out using the Finite Integration Technique, e.g.
[5], with N = 32924 degrees of freedom.
Subsequently reduced order modgtg(s) of dimen-
sionn = 30 have been computed urgj < 1012 ap-
plying the toleranced = 7.0- 10~*1. The expansion
points in thei-th iteration step are denoted By
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