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Summary. In this work, a numerical analysis method is
introduced by combining the Multiple Multipole Program
(MMP) and layered geometry Green’s functions. By the
method, several difficulties in the analysis of photonic struc-
tures in layered geometries are eliminated and an efficient
simulation tool is obtained that can analyze both 2D and 3D
geometries.

1 Introduction

The advancements in the fabrication process of pho-
tonic structures, made various nano devices quite pop-
ular, including photonic crystals, chemical and bio
sensors, optical antennas and waveguides [1]. Mostly,
these photonic devices are fabricated in a multilayered
structure. In the numerical analysis of such structures,
the layers are often ignored for the sake of simplicity
of simulations, which can cause substantial inaccura-
cies in the results. Especially for structures that sup-
port Surface Plasmon Polariton (SPP) or guided wave
modes, the errors become so high that the computa-
tions become useless. In order to understand the phys-
ical phenomena related to layered geometries and to
improve the efficiency of the devices, a numerical
analysis tool that takes the layered geometries into ac-
count efficiently is needed. In this paper, a candidate
for such a numerical tool is introduced by combining
MMP and layered media Green’s functions.

2 The Method

Since the main idea of the method introduced, is to
combine MMP and layered media Green’s functions,
both of them will be discussed briefly below.

2.1 MMP

MMP is one of the most reliable and efficient com-
putational tools for the analysis of plasmonic struc-
tures in frequency domain [2]. It is a semi-analytical,
boundary discretization method that uses various an-
alytic solutions of the Maxwell equations or so called
expansions (e.g. plane waves, cylindrical waves, spher-
ical waves, etc.) in order to approximate the fields
scattered by the objects. In the MMP analysis, the
electromagnetic field in domain i (F i) can be writ-
ten as a superposition of the fields generated by the
expansions as:

F i =
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∑
n=1

Ai
nE i

n + error (1)

where E i
n is the field generated by expansion n and

Ai
n is the corresponding complex amplitude. The am-

plitudes are computed in such a way that the weighted
residuals are minimized on the interfaces between dif-
ferent domains.

2.2 Layered media Green’s functions

The Green’s function describes the field generated
by an infinitesimal source at a ceratin location. In
free space, the Green’s function can be represented
by closed form formulations (1D (an infinitely large
plane is the source): plane wave, 2D (an infinitely
long line is the source): cylindrical monopole waves,
3D (a point is the source): spherical dipole waves),
which makes it easy and fast to use them as expan-
sions in methods such as MMP or Method of Mo-
ments (MoM). In the case of a layered geometry, the
Green’s functions can only be obtained by summing
up all the plane waves that are generated at the lo-
cation of the point source, for which the continuity
conditions between different layers are fulfilled ana-
lytically. Since the spectrum of a point source is con-
tinuous (i.e. all the propagating and evanescent plane
waves should be taken into account), the summation
leads to an integral (Sommerfeld integral) with infi-
nite bounds as follows (when the layers are stacked in
y-direction and e−iωt is used):
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where G(x,y,z) and G̃(kx,kz) are the spatial and spec-
tral domain Green’s functions for the given field com-
ponent, respectively. In this calculation, the reflec-
tion and the transmission relations for the given plane
wave is contained in the spectral domain Green’s
function [3]. In general, the integrands of (2) are oscil-
latory and slowly decaying which makes the integra-
tion numerically expensive. This burden can be han-
dled by using series acceleration techniques. In this
work, the Aitken series and weighted averages meth-
ods are used in order to decrease the time needed for
the integrations [4].

Equation (2) is the most general form of the Som-
merfeld integral, which provides the Green’s function
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in 3D. One can obtain the Green’s function in 2D by
(2), e.g., by taking the kz value as a constant for a line
source in z-direction. It is also possible to obtain the
Green’s function of a complex origin source which
generates beams by changing the integration paths, so
that the integrands stay stable. This kind of expan-
sions can be used to decrease the total number of ex-
pansions, especially for long structures compared to
the wavelength.

By using layered media Green’s functions as an
expansion set in MMP, one can decrease the complex-
ity of the problems, since the continuity conditions
on the layered geometry is fulfilled analytically [5].
In the next section, numerical examples will follow,
demonstrating the efficiency of the method.

3 Numerical Examples

As the first example, a 2D triangle scatterer is placed
in a four layered geometry. The result of the sim-
ulation, and the problem specifications are given in
Fig. 1. For this simulation, a total of 76 expansions (38
for the field inside the scatterer (free space monopoles)
and 38 for the field outside the scatterer (layered ex-
pansions)) are used, which makes the maximum rela-
tive error on the interface of the scatterer∼ 0.1%. For
this problem, since the incident field does not propa-
gate in z-direction (kz,inc = 0), the layered expansions
are obtained by (2) with kz = 0.

Fig. 1. Scattered field, magnitude of Hz component in log-
arithmic scale. Incident field: Hz polarized plane wave im-
pinging normally on top of the structure with λ0 = 600nm.
Layer-1(lowermost layer) and Layer-4(uppermost layer) are
free-space, Layer-2: Ag (εr2 =−15.91+ i0.43) d2 = 15nm,
Layer-3: dielectric material (εr3 = 9.0) d3 = 285nm. The
scatterer is Ag elevated 50nm from the boundary between
layers 2 and 3. The side lengths of the scatterer are 160,
160
√

5 and 160
√

5nm with the rounding radius of 30nm.

For the second example, an Ag sphere in a di-
electric slab sitting above an Ag substrate is analyzed.
For this simulation, 73 expansions (1 for the field in-
side the sphere (free-space multipole with max. or-
der and degree of 5) and 72 for the field outside the
sphere (layered expansions)) are used resulting in a
maximum relative error of∼ 0.1%. The result and the
problem specifications are given in Fig. 2.

Fig. 2. Total field, Ey component at an instance of time on
XY -plane (z = 0). Incident field: Vertical electrical dipole
at (1,1,1)µm λ0 = 750nm. Layer-1(lowermost layer): Ag
(εAg =−26.73+ i0.33), Layer-2: dielectric material (εr2 =
9.0) d2 = 800nm and Layer-3(uppermost layer) is free-
space. The scatterer is an Ag sphere with r = 200nm located
at the center of Layer-2.

4 Conclusion

In this paper a numerical tool is introduced by com-
bining layered media Green’s functions and MMP. As
a result, an efficient tool is obtained that can solve the
scattering problems in 2D and 3D geometries.
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