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Summary. To simulate the diffraction of planar waves by
periodic surface structures, Huber et al. [2] have proposed to
combine a Fourier-mode expansion over the half space with
a finite element approximation of the electric field close to
the surface. We analyze a slight modification of this mortar
method and discuss an application to an inverse problem in
scatterometry. In particular, we present a shape derivative
formula for the derivative with respect to geometry param-
eters.

1 Boundary Value Problem for Gratings

Suppose the space R3 is filled with two materials sep-
arated by an interface Γ , which is a small perturbation
of the x3 = 0 plane and which is 2π-periodic in the xl
directions for l = 1,2. Furthermore, suppose the ma-
terial below Γ is perfectly conducting and that in the
domain Ω above Γ is lossless. To compute the diffrac-
tion of a time-harmonic plane wave Ein incident on Γ

from above, we have to solve

∇×∇×E− k2 E = 0 on Ω , (1)
ν×E = 0 on Γ , (2)

E(x)−Ein(x) = ∑
n∈Z2

Eneivn·x for x3>b. (3)

Here ν is the unit normal vector on Γ , b is a fixed x3
coordinate greater than those of Γ , and vn are the vec-
tors of the upward radiating (plane wave and evanes-
cent) Fourier modes.

2 Mortar Method

It is natural, to approximate E for x3 > b by Ein plus
a Fourier-mode expansion E+ like that on the right-
hand side of (3). In the domain between the artificial
surface Γ ′b := {x ∈ R3 : x3 = b} and Γ , an FE approx-
imation with quasi-periodic edge elements is possible.
Clearly, the FEM can be restricted to the cell of peri-
odicity Ωb := {x ∈Ω : x3 < b, 0≤ xl ≤ 2π, l = 1,2}
and the mode expansion to the bounded upper domain
Ω

+
b := {x∈R3 : b≤x3≤b+1, 0≤xl≤2π, l=1,2} or

even to Γb := {x∈Γb : 0≤xl≤2π, l=1,2}. Following
the idea of Huber et al. [2], we couple the two approx-
imations by a mortar technique. More precisely, we

replace the boundary value problem by the following
variational equation

a
(
(E,E+),(V,V+)

)
=−a

(
(0,Ein),(V,V+)

)
,

required for all V∈H(curl,Ωb) and V+∈H(curl,Ω+
b ),

where the sesquilinear form a is defined as the sum of∫
Ωb
{∇×E ·∇×V+E ·V}

−
∫

Γb
∇×E+ ·ν×V+

∫
Γb

ν×(E−E+) ·∇×V+

plus a certain sesquilinear form corresponding to a fi-
nite rank operator. We get (cf. [4])

Theorem 1. The operator corresponding to the vari-
ational equation is Fredholm of index zero. The so-
lution of the sesquilinear form is equivalent to the
boundary value problem (1)-(3).

Unfortunately, there are examples of gratings such
that the solution of the boundary value problem is
non-unique. However, the scattered (non-evanescent)
plane wave modes are always unique (cf. [4]).

Using Theorem 1, the justification of a coupled
Fourier-mode-FE method should be possible (com-
pare [1]). Simply, the E and V are to be replaced by
edge finite elements and the E+ and V+ by truncated
Fourier-mode expansions. Of course, the variational
form is to be modified slightly. Frequently, in practical
computations, only a small number of the Rayleigh
coefficients En (cf. (3)) differ essentially from zero.
Thus only a few terms in the Fourier-mode expansions
are needed.

3 Inverse Problem in Scatterometry

To evaluation the fabrication process of lithographic
masks, simple periodic or biperiodic structures must
be measured. Using scatterometric techniques, the
corresponding part of the surface is illuminated by a
ray of laser light. The efficiencies (intensities) of the
scattered plane wave modes are measured. Finally, a
biperiodic surface structure is sought, the efficiencies
of which coincide with the measured data, i.e., an in-
verse problem is to be solved.

Though this problem is severely ill-posed, we are
looking for small deviations of the surface structure
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from the fabrication standard, i.e., for surfaces de-
scribed by a small number of geometry parameters.
The reduction to these parameters is like a regulariza-
tion of the inverse problem, and the determination of
the parameters with high accuracy should be possible.
Note that we do not discuss the effect of modeling er-
rors or random perturbations.

The numerical solution of the inverse problem
can be realized minimizing a functional F (E), where
F (E) is some measure for the deviation of the mea-
sured efficiencies and the efficiencies of the scattered
field E corresponding to a grating structure with given
parameters. Although the gratings are not perfectly
conducting anymore, the scattered field E can be com-
puted by an FEM similar to that of Sect. 3. Opti-
mization schemes like the Gauß-Newton method or
the Levenberg-Marquardt algorithm can be applied.
However these local optimization routines require the
Jacobian of the operator, mapping the set of geometry
parameters to the vector of efficiency values. In other
words, we need formulas for the derivatives of E with
respect to the geometry parameters.

4 Shape Derivative

In the case of periodic gratings, i.e., for the two-
dimensional Helmholtz equation, the classical meth-
ods for shape calculus apply. Unfortunately, for the
time-harmonic Maxwell equation (1), an analogous
procedure is not possible. Indeed, the underlying en-
ergy space H(curl,Ωb) is not invariant under the trans-
formations corresponding to a change of the geometry
parameter.

On the other hand, in our optical applications the
magnetic permeability µ is constant. For this case, it
is known that the magnetic vector H is piecewise in
the Sobolev space H1. Using this fact, the shape cal-
culus applies to the derivative of H. Switching now
from the magnetic vector to the electric field, we can
derive a formula for the derivative w.r.t. a geometry
parameter p (cf. [3])

∂pF (E) = Re a1(E,Eadj). (4)

Here a1(E,F) is a special sesquilinear form depend-
ing on the L2 functions E, F , E, ∇×E, and ∇×F .
The field E in (4) is the actual electric solution of the
time-harmonic Maxwell equation. The field Eadj is the
solution of the adjoint equation. In other words, Eadj
is the solution of an equation with the adjoint FEM
matrix and with a right-hand side depending on the
functional F .

In a numerical experiment, we have implemented
a version of (4) discretized by FEM. The numerical al-
gorithm for the inverse problem mentioned in Sect. 3,
including the shape derivative based on (4), converges
well.
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