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Summary. Most analyses of circuit equations start with
solving the steady-state (DC) solution. In several cases this
can be very hard. We present a novel time domain source
stepping procedure to obtain a DC solution of circuit equa-
tions. The source stepping procedure is automatically adap-
tive. Controlled sources can be elegantly dealt with. The
method can easily be combined with existing pseudo-transient
procedures. The method is robust and efficient.

1 Introduction

The circuit equations can be written as [5, 10]

d
dt

q(x)+ j(x)+ s(t,x) = 0 (1)

Here s(t,x) represents the specifications of the sources.
The unknown x = x(t) consists of nodal voltages and
of currents through voltage defined elements. We as-
sume that q(0) = 0, and j(0) = 0.
The steady state solution, which is called DC-solution
(Direct Current solution), xDC, satisfies

j(xDC)+ s(0,xDC) = 0. (2)

Usually, and already hinted by setting t = 0 in (2), the
DC-solution provides the initial value for the transient
problem (1). In general, the problem (2) is non-linear.
How to solve this problem is the subject of this note.
The importance of the DC-problem lies in the fact that
the DC-solution is crucial as starting solution for a
number of next analyses (transient analysis, AC anal-
ysis, Harmonic Balance analysis, Periodic Steady-
State analysis). In general, (1) forms a system of
Differential-Algebraic Equations (DAEs). With C =
∂q(x)

∂x
x=xDC

and G = ∂ j(x)
∂x

x=xDC

. We assume that λC +

G is non-singular for λ in some neighbourhood of
0 (may be excluding λ = 0). To solve the equations
Newton’s method, or variants, may be applied [3,5,8],
which can be combined with gmin-stepping, in which
linear conductors g are placed parallel to the non-
linear part inside each transistor (device). Iteratively
g ↓ gmin, after which the Newton counter is increased.

Another approach is Pseudo-Transient [2]. In Pseudo-
Transient (PT) one can use relaxed tolerances for the
Newton process and for the time step control proce-
dure. Also this can be combined with gmin-stepping
during each time step. In PT one has to provide a non-
trivial initial solution. A new procedure is decribed
in the next section. Other methods are: temperature
stepping, source stepping (the sources are iteratively
increased to their final value), homotopy methods, or
optimization [1, 4, 7, 9–12].

2 Time-domain Source Stepping

Usually, in Source Stepping one introduces a param-
eter λ and considers the problem

j(x(λ ))+λ s(0,x(λ )) = 0. (3)

In this case it is assumed that for λ = 0 the problem
(3) is easily solved so that in the end the original prob-
lem is solved. The same parameter λ is applied to all
sources s in the circuit. In general, for each value of λ

a nonlinear problem has to be solved.
We introduce a time-domain variant (SSPT) that of-
fers an automatic continuation process, based on PT
and adapting the transient stepsize and the λ stepsize
at the same time.
We define a time t = T at which we want to have
solved the original DC-problem. We also introduce
a time Tα = αT (by default α = 0.5) at which or-
dinary PT will start simulation using the sources as in
the original DC-problem, i.e. using λ = 1 and where
PT integrates from Tα to T ′, where T ′ ≤ T is the
point where all transient effects have become negli-
gible (see also Fig. 1).
On the interval [0,Tα ], a special PT integration is
performed with the function λ (t) = t/Tα . Hence, at
each time step, also the actual applied source values
change. The interval [0,Tα ] is the switch-on interval,
the interval [Tα ,T ] is the interval to damp-out tran-
sient effects. On both intervals PT uses an automatic
time step determination procedure. On the interval
[Tα ,T ] an ordinary PT procedure is executed. Hence,
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if, at some time point, the Newton iterative process
does not converge, a re-integration will be done with a
smaller stepsize. Recursion in controlled sources asks

Fig. 1. On [0,Tα ] a time-dependent voltage source λ (t)E is
used where λ (t) = t/Tα . On [Tα ,T ] we have λ ≡ 1.

for a modification in (3). An expression for a con-
trolled voltage source E1(0,1) may look like

V (E1) = 5+4I(E1)+ [6V (R1)+7I(E2)+12]2 (4)

It is controlled by the controlling ”ev’s” (electrical
variables) I(E1), V (R1), and I(E2). We write the ex-
pression for the applied value V (E1) as

V (E1) = ψ(ev1,ev2, . . . ,evn) (5)

As value during the source stepping at time t on [0,Tα ]
we propose to take

V (E1) = ψ̃(ev1, . . . ,evn), where (6)
ψ̃(ev1, . . . ,evn) = ψ(ev1, . . . ,evn)+

(λ (t)−1)ψ(0, . . . ,0). (7)

Note that in (4), ψ(0, . . . ,0) = 149. This value has
to be calculated once. When in (4) E2 is a controlled
voltage source too, contributions to the Jacobian ma-
trix are calculated by ∂ψ̃

∂x = ∂ψ̃

∂evi

∂evi
∂x , which gives re-

cursion. Note that λ does not occur in the matrix.
Clearly, for λ = 0 the applied voltage is zero (assum-
ing starting from the zero solution, which implies that
all ev’s are zero), which makes the zero solution the
exact solution.When λ = 1 the original voltage ex-
pression is used. Since our equations (1) are DAEs
we remark that for all t the generated solution is con-
sistent for the problem at hand. Because of the switch-
on and the damp-out phase the process mimics a real
physical process.

3 Results

We tested the SSPT on a set of difficult problems
where parameters were swept (temperature, and statis-

tics). The SSPT was always convergent (without need-
ing gmin-iteration). It was 1-13 times faster than New-
ton-Raphson (that sometimes needed internal gmin-
iteration). Normal PT was less robust than SSPT.
Further improvements in the time-domain integra-
tions, after starting with a proper xDC, have been
tuned to fault analysis [6].
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