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Summary. The startup of most electrical machines ex-
hibits a strong nonlinear behavior due to saturation. In prac-
tice, the underlying nonlinear saturation curve is modeled
according to measurement data that typically contain errors.
The electromagnetic fields and in particular the inrush cur-
rents inherit this uncertainty. In this paper, we propose a
specific stochastic model (BH-curve) to describe uncertain-
ties and we demonstrate the use of generalized polynomial
chaos for the uncertainty quantification of these inrush cur-
rents. This requires time stepping of systems of nonlinear
partial differential algebraic equations that result from the
coupling of field and circuit systems.

1 Introduction

Efficient design of electric machines (transformers,
actuators, generators etc.) requires insight into the de-
vice’s electromagnetic field distribution. Often, the
available inputs, e.g. material data, include unknown
errors for example due to measurements. The influ-
ence of these errors can be characterized by uncer-
tainty quantification. In the mathematical models, the
corresponding parameters are substituted by random
variables to describe the uncertainties.

In this paper a transformer, modeled by the mag-
netoquasistatic approximation to Maxwell’s partial
differential equations (PDEs), is considered. This sys-
tem is coupled to a network model of an electric cir-
cuit given by a system of differential algebraic equa-
tions (DAEs). The coupling is necessary in order to
to simulate the startup phase where the highest inrush
currents can be observed. To account for the measure-
ment errors, the material curves include (random) pa-
rameters, such that the time-dependent solution of the
PDAEs becomes a random process.

Uncertainties in the material parameters of mag-
netoquasistatic problems have been studied before but
only considering linear material laws in frequency do-
main, e.g., [2, 3, 11]. In this paper we do not propose
to model the material laws as uncertain, but the un-
derlying measurement data. This allows for a natural
choice of the probability distribution.

The stochastic model can be solved by a quasi
Monte-Carlo simulation, for example. We use the gen-
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Fig. 1: 2D model of a transformer, taken from [9].

eralized polynomial chaos (gPC), see [1, 6, 12], in the
numerical simulation to investigate how this approach
behaves. A stochastic Galerkin method results in a
larger coupled system of DAEs, cf. [10]. To illustrate
the modeling and the simulation, we discuss a 2D fi-
nite element discretization of a transformer.

2 Field Model

In the low-frequency regime the electromagnetic field,
i.e., the eddy current problem, is typically described
in terms of the magnetic vector potential A (MVP),
with magnetic flux density B = ∇×A, on a computa-
tional domain by the curl-curl equation

κ
∂A
∂ t

+∇×
(

ν∇×A
)
= Jsrc (1)

with conductivity κ and nonlinear reluctivity ν . In our
model, ν = ν(∇×A,Y) may depend on random vari-
ables Y to account for measurement errors. The sys-
tem is equipped with boundary and initial conditions
for A. The material parameters are piecewise constant
in all subdomains, only for ferromagnetic materials
(e.g. the steel core in Fig. 1) the Brauer model, [4], is
chosen to account for nonlinear saturation

ν(B,Y) = k1(Y) · exp
(
k2(Y) · |B|2

)
+ k3(Y) , (2)

where the model parameters ki are fitted from mea-
surement data and thus depend on the errors described
by Y.
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The circuit coupling is established by identify-
ing parts of the computational domain as branches in
the circuit. Typically for coils the stranded conduc-
tor model is used and for massive bars the solid con-
ductor model is feasible, [5]. In the case of a number
of Nstr stranded conductor models (i.e., spatially re-
solved field elements), the excitation from the circuit
is imposed on the field by the source term

Jsrc =
Nstr

∑
k=1

χkik , (3)

where the winding functions χ spatially distributes
the corresponding currents i. To obtain current/volt-
age relations for each field element, additional cou-
pling equations are needed, e.g.∫

Ω

χk ·
∂A
∂ t

dV = vk−Rkik (k=1,. . . ,Nstr) (4)

with the DC resistances R for the windings. Hence,
given voltage drops v, the system (1-4) defines A, i.

3 Uncertainties in the Measurement

The material parameter ν is implicitly given by mea-
surements of the BH-curve (Bi,Hi), for i = 1, ...,N.
The Brauer material model (2) can be fitted either by
a nonlinear least squares algorithm, as e.g. in [8], or
less elegantly by selecting 3 measurement points and
computing the reluctivity function that fulfills

Hi = ν(Bi)Bi

exactly where we choose the points i = 1,2,3 with-
out loss of generality, e.g. [7]. We follow the second
approach to keep the parameter space small.

The field strength H is assumed to be affected by
a measurement error:(

Bi,Hi ·Yi

)
for i = 1,2,3

where Yi is normally distributed with mean µ = 1 and
standard deviation σ = 0.1.

We propose to quantify the impact of the perturba-
tions above on the currents i in (4) by the generalized
polynomial chaos.

The transformer model as depicted in Fig. 1 has
been simulated for 100 realization of the above in-
troduced normally distributed random variables. The
results are shown in Fig.2. The uncertainties cause de-
viations of up to 20A in the primary inrush current.

In the full paper the computation of the expected
values and the variance of the currents are discussed
in more detail and using different uncertainty quan-
tification techniques.
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Fig. 2: Impact of random parameters on the primary current.
The black line denotes the mean of the 100 random walks,
the grey neighborhood is given by the maxima and minima.
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