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Summary. Model order reduction (MOR) has been widely
used in the electric networks but little has been done to re-
duce higher index differential algebraic equations(DAEs).
Most methods first do an index reduction before reducing
a higher DAEs but this can lead to loss of system physical
properties. In this paper we present a new MOR method for
DAEs called the index-aware MOR (IMOR) which can re-
duce higher index-2 system while preserving the index of
the system.

1 Introduction

Consider a linear time invariant (LTI) DAE system:

Ex′(t) = Ax(t)+Bu, x(0) = x0, (1a)

y(t) =CTx(t), (1b)

where E,A∈Rn,n, B∈Rn,m,C ∈Rn,`,x(t)∈Rn is the
state vector, u(t) ∈ Rm is the input vector, y(t) ∈ R`

is the output vector and x0 ∈ Rn must be a consistent
initial value since E is singular. In many MOR meth-
ods [1] they always assume that x0 = 0 which lead
to a transfer function H(s) = CT (sE −A)−1B if and
only if matrix pencil sE−A is regular. Unfortunately
for the case of DAEs we cannot always have this free-
dom of choosing an arbitrary initial condition x0, in-
fact we cannot always obtain a transfer function espe-
cially for index greater than 1 as discussed in Sect. 2.
This motivated us to propose a new MOR technique
for DAEs called the IMOR method which takes care
of this limitation [2, 3]. In this technique before we
apply MOR we first decompose the DAE system into
differential and algebraic parts using matrix and pro-
jector chains introduced by März [4] in 1996. We then
use the existing MOR techniques such as the Krylov
based methods on the differential part and develop
new techniques for the algebraic part. This is done as
follows: Assume (1a) is of tractability index µ , then
it’s projector and matrix chains can be written as, set
E0 := E ,A0 := A, then E j+1 = E j−A jQ j, A j+1 :=
A jPj, j ≥ 0, where ImQ j = KerE j,Pj = In −Q j.
There exists µ such that Eµ is nonsingular while all E j
are singular for all 0≤ j < µ−1. Using these chains
we can rewrite Equation (1a) as projected system of
index-µ:

Pµ−1 · · ·P0x′+Q0x+ · · ·+Qµ−1x = E−1
µ

(
Aµ x+Bu

)
(2)

In order to decompose higher index systems (µ > 1),
März [4] suggested an additional constraint Q jQi =
0, j > i on the projector construction. If this constraint
holds then Equation (2) can be decomposed into dif-
ferential and algebraic parts. However, the März de-
composition leads to a decoupled system of dimen-
sion (µ + 1)n. It does not even preserve the stabil-
ity the DAE system. This motivated us to modify the
März decomposition using special basis vectors as
presented in papers [3] and [2] for the case of index-
1 and index-2 respectively. Our decomposition leads
to a decoupled system of the same dimension as that
of the DAE system. Then we apply Krylov methods
on the differential part and constructed subspaces to
reduce the algebraic parts. In Sect. 2 we briefly dis-
cuss the IMOR method for index-2 systems (IMOR-
2) more details can be found in [2].

2 Index-aware MOR for index-2 systems

Assume Equation (1a) is an index-2 system this im-
plies µ = 2. We observed that for higher index DAEs
there is a possibility of obtaining a purely algebraic
decoupled system depending on the nature of spec-
trum of the matrix pencil σ(E,A)=σ f (E,A)∪σ∞(E,A),
where σ f (E,A) and σ∞(E,A) is the set of the finite
and infinite eigenvalues respectively. This happens
when matrix spectrum has only infinite eigenvalues,
i.e.σ f (E,A) = /0. Thus higher index DAEs can be de-
composed into two ways. Due to space we are going
to only discuss the case when σ f (E,A) 6= /0 the other
case can be found in our paper [2]. We now assume
matrix pencil of Equation (1a) has atleast one finite
eigenvalue. We then construct basis vectors (p,q) in
Rn with their inversion (p∗,q∗)T for the projectors P0
and Q0 respectively where p ∈ Rn,n0 , q ∈ Rn,k0 . This
leads to a theorem below.

Theorem 1. Let P01 = pT
∗ P1 p, Q01 = pT

∗Q1 p, then
P01,Q01 ∈ Rn0,n0 are projectors in Rn0 provided the
constraint condition Q1Q0 = 0 holds.

Next, we construct another basis matrix (p01,q01) in
Rn0 made of n01 independent columns of projector
P01 and k1 independent columns of its complementary
projector Q01 such that n0 = n01 + k1 and it’s inverse
can be denoted by (p∗01,q

∗
01)

T . Then Equation (1) can
be decomposed as:
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ξ
′
p = Apξp +Bpu, (3a)

ξq,1 = Aq,1ξp +Bq,1u, (3b)

ξq,0 = Aq,0ξp +Bq,0u+Aq,01ξ
′
q,1, (3c)

y =CT
p ξp +CT

q,1ξq,1 +CT
q,0ξq,0, (3d)

where

Ap := p∗T01 p∗T0 E−1
2 A2 p0 p01, Bp := p∗T01 p∗T0 E−1

2 B,

Aq,1 := q∗T01 p∗T0 E−1
2 A2 p0 p01, Bq,1 := q∗T01 p∗T0 E−1

2 B,

Aq,0 := q∗T0 P1E−1
2 A2 p0 p01, Bq,0 := q∗T0 P1E−1

2 B,

Aq,01 := q∗T0 Q1 p0q01, Cp = pT
01 pT

0 C ∈ Rn01,`,

Cq,1 = qT
01 pT

0 C ∈ Rk1,`, Cq,0 = qT
0 C ∈ Rk0,`.

Equations (3a), (3b) and (3c) are of dimension n01,k1
and k0 respectively, where n = n01 + k1 + k0. System
(3) preserves stability of the DAE system (1) since it
can be proved that σ(Ap) = σ f (E,A). If we take the
Laplace transform of (3) and set ξp(0) = 0 then we
obtain

Y (s) =
[
Hp(s)+Hq,1(s)+Hq,0(s)

]
U(s)+Hq,0(0),

where Hp(s) =CT
p (sIn0 −Ap)

−1Bp,

Hq,1(s) =CT
q,1

[
Aq,1(sIn0 −Ap)

−1Bp +Bq,1
]
,

Hq,0(s) =CT
q,0

[
(Aq,0 + sAq,01Aq,1)(sIn0 −Ap)

−1Bp
]

+CT
q,0

[
Bq,0 + sAq,01Bq,1

]
, Hq,0(0)=−CT

q,0Aq,01Bq,1u(0).
Thus not always we can obtain the transfer function
of index 2 systems for arbitrary input vector u unless
Hq,0(0) = 0⇒ Y (s) = H(s)U(s). We can now apply
IMOR-2 method as follows: If we choose the expan-
sion point s0 ∈ C \ σ(Ap), we construct a Krylov-
subspace generated by Mp := −(s0In0 − Ap)

−1 and
Rp :=(s0In0−Ap)

−1Bp. Then, Vpr := orth(κr(Mp,Rp)),
r ≤ n01. We then use Vpr to construct the subspace
Vq,1 = span(Bq,1,Aq,1Vpr) and its orthonormal ma-
trix is denoted by Vqτ1 ,1

= orth(Vq,1),τ1 ≤ min((r +
1)m,dim(Vqτ1

)). We finally construct subspace
Vq,0 = Span{VQ1 ,VQ2 ,VQ3}, where
VQ1 = Aq,0Rp +Bq,0 + s0(Aq,01Aq,1Rp +Aq,01Bq,1),
VQ2 = Aq,01Bq,1,
VQ3 =

[
(Aq,0 + s0Aq,01Aq,1)Mp +Aq,01Aq,1

]
Vpr and it’s

orthonormal matrix is denoted by Vqτ0 ,0
= orth(Vq,0),

where τ0 ≤ min((r + 2)m,dim(Vq,0)). We can now
use the orthonormal matrices Vpr ,Vqτ1 ,1

and Vqτ0 ,0
to

reduce the dimension of the subsystems (3a), (3b) and
(3c) respectively as consequence the dimension of the
decoupled system (3) is also reduced. Hence, if we
substitute ξp =Vpr ξpr , ξq,1 =Vqτ1 ,1

ξqτ1 ,1
,

ξq,0 =Vqτ0 ,0
ξqτ0 ,0

, into system (3) and simplifying we
can obtain a reduced model of DAE system (1) which
will call the IMOR-2 model.

3 Numerical results

We used an index -2 test system called S8OPI in [5]
which is a large power system RLC model. It’s a

single-input single-output (SISO) system of dimen-
sion 4182. We applied the IMOR-2 method using
s0 = j103. We obtained a reduced model of total di-
mension 219 as shown in Table 1. We observed that
the magnitude of the transfer reduced model coincides
with that of the original model at low frequencies with
very small error as shown in Fig. 1. We have seen that

Table 1. Dimension of the Original and Reduced model

Models Dimension
n01 k1 k0

Original Model 4028 35 119
Reduced Model 170 1 48

the IMOR-2 method leads to good reduced model and
can be used on any index-2 system.

Fig. 1. Magnitude of the transfer functions
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