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Summary. We present a new approach for the computa-
tion of a not a-priori known, time-varying frequencies in a
multi-rate circuit simulation. Typical examples are the start-
up simulation of oscillators, or circuits with frequency mod-
ulation. The method is based on the optimization of the
smoothness of the multi-rate solution, which is in turn es-
sential for the efficiency of the computation.

1 Introduction

Widely separated time-scales occur in many radio-
frequency (RF) circuits such as mixers, oscillators,
PLLs, etc., making the analysis with standard numer-
ical methods difficult and costly. Low frequency or
baseband signals and high frequency carrier signals
often occur in the same circuit, enforcing very small
time-steps over a long time-period for the the numer-
ical solution, which results in prohibitively long run-
times.

A method to circumvent this bottleneck is to refor-
mulate the ordinary circuit DAEs as a system of par-
tial DAEs (multi-rate PDAE). The method was first
presented in [5] for the computation of steady states.
The technique was adapted to the transient simula-
tion of driven circuits with a-priori known frequen-
cies in [7,9]. A generalization for circuits with a-priori
unknown or time-varying frequencies was developed
in [3, 4, 6].

Here, we present a new approach for the computa-
tion of a not a-priori known, time-varying frequency,
which is driven by the requirement to have a smooth
multi-rate solution, crucial for the efficiency of the
computation.

2 The multi-rate circuit simulation
problem

We consider circuit equations in the charge/flux ori-
ented modified nodal analysis (MNA) formulation,
which yields a mathematical model in the form of a
system of differential-algebraic equations (DAEs):
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To separate different time scales the problem is refor-
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If the new source term is chosen, such that sθ (t) =
ŝ
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)
, where Ωθ (t) = θ +

∫ t
0 ω(s)ds, then a so-

lution x̂ of (2) determines a family {xθ : θ ∈ R} of
solutions for
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by xθ (t) = x̂
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.

Although the formulation (2) is valid for any cir-
cuit, it offers a more efficient solution only for certain
types of problems. This is the case if x̂(τ, t) is peri-
odic in t and smooth with respect to τ . In the sequel
we will consider (2) with periodicity conditions in t,
i.e., x̂(τ, t) = x̂(τ, t +P) and suitable initial conditions
x̂(0, t) = X0(t). Here P is an arbitrary but fixed period
length.

3 Meaning and suitable choice of ω(τ)

Note that ω(τ) can, with a corresponding choice of
ŝ(τ, t), be chosen arbitrarily. This freedom may be
used to facilitate an efficient numerical solution of
(2). The smoothness of x̂(τ, t) is essential for the effi-
ciency of classical solvers. Therefore, we require∫
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in order to determine ω(τ). For frequency modu-
lated oscillations one obtains indeed the instantaneous
frequency as ω(t)

P , while x̂(τ, t) is constant with re-
spect to τ . For some examples a (nearly) optimal ω(t)
might be known in advance, while in other case (e.g.
start-up of an oscillator) it might be necessary to de-
termine ω(t) during the simulation, by enforcing the
smoothness condition (4).

4 Discretization

We discretize (2) with respect to τ by a Rothe method
using a linear multi step method (e.g. Gear’s BDF or
the trapezoidal rule). This results in a periodic bound-
ary value problem in t of the form
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(
Xk(t))+ fk(Xk, t) = 0, (5)
Xk(t) =Xk(t +P),

where Xk(t) is the approximation of x̂(τk, t) for the
k-th time step τk, while ωk is an approximation of
ω(τk). An optimal ωk is determined with the condi-
tion ∫ P

0

∣∣Xk(t)−Xk−1(t)
∣∣2 dt→min, (6)

which is a good approximation of condition (4).
The periodic problem (5) can be solved by a col-

location or Galerkin method, where Xk(t) is expanded
in a periodic basis {φk} (as a Fourier, B-spline, or
wavelet basis) and tested at collocation points or inte-
grated against test functions, respectively. This leads
to a nonlinear system of equations for the coefficients
ck,` of the basis expansion Xk(t) = ∑` ck,` φ`(t). Here,
the condition (6) is replaced by the condition

∑
`
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∥∥2
2→min . (7)

5 Example: A Phase Locked Loop

The method has been tested our method on several
circuits. To solve the periodic problem we have used
an adaptive spline wavelet method described in [1,2].
We show results from the multi-rate simulation of a
Phase Locked Loop (PLL) with a frequency modu-
lated input signal. Both the frequency parameter ω(τ)
(Fig. 1) determined by our method, and the control
signal of the oscillator (Fig. 2) reflect perfectly the in-
stantaneous frequency. The feedback signal in Fig. 3
shows that the computed ω(τ) leads indeed to optimal
smoothness.
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Fig. 1. Plot of simulated ω(τ).
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