Optimal frequency sweep method in multi-rate circuit simulation
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Summary. We present a new approach for the computa-
tion of a not a-priori known, time-varying frequencies in a
multi-rate circuit simulation. Typical examples are the start-
up simulation of oscillators, or circuits with frequency mod-
ulation. The method is based on the optimization of the
smoothness of the multi-rate solution, which is in turn es-
sential for the efficiency of the computation.

1 Introduction

Widely separated time-scales occur in many radio-
frequency (RF) circuits such as mixers, oscillators,
PLLs, etc., making the analysis with standard numer-
ical methods difficult and costly. Low frequency or
baseband signals and high frequency carrier signals
often occur in the same circuit, enforcing very small
time-steps over a long time-period for the the numer-
ical solution, which results in prohibitively long run-
times.

A method to circumvent this bottleneck is to refor-
mulate the ordinary circuit DAEs as a system of par-
tial DAEs (multi-rate PDAE). The method was first
presented in [5] for the computation of steady states.
The technique was adapted to the transient simula-
tion of driven circuits with a-priori known frequen-
ciesin [7,9]. A generalization for circuits with a-priori
unknown or time-varying frequencies was developed
in [3,4,6].

Here, we present a new approach for the computa-
tion of a not a-priori known, time-varying frequency,
which is driven by the requirement to have a smooth
multi-rate solution, crucial for the efficiency of the
computation.

2 The multi-rate circuit simulation
problem

We consider circuit equations in the charge/flux ori-
ented modified nodal analysis (MNA) formulation,
which yields a mathematical model in the form of a
system of differential-algebraic equations (DAEs):

Lq(x(t)) +g(x() = s(t). (1)

To separate different time scales the problem is refor-
mulated as a multi-rate PDAE, i.e.,

(%+0(1)§ )a(@m.0) +8(3(e.0) =5(z.0). @

If the new source term is chosen, such that sg(¢) =
$(1,9¢(t)), where Qq(t) = 6 + [ ®(s) ds, then a so-
lution £ of (2)) determines a family {xg : 0 € R} of
solutions for

2q(x(1)) +8(x(t) = sa(2), 3)

by xg(t) = £(1,Q9(1)).

Although the formulation (2) is valid for any cir-
cuit, it offers a more efficient solution only for certain
types of problems. This is the case if £(7,¢) is peri-
odic in t and smooth with respect to 7. In the sequel
we will consider () with periodicity conditions in ¢,
i.e., £(7,t) = £(7,t+ P) and suitable initial conditions
%(0,2) = Xo(¢). Here P is an arbitrary but fixed period
length.

3 Meaning and suitable choice of w(7)

Note that @(7) can, with a corresponding choice of
§(t,1), be chosen arbitrarily. This freedom may be
used to facilitate an efficient numerical solution of
([2). The smoothness of £(7,) is essential for the effi-
ciency of classical solvers. Therefore, we require
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in order to determine ®(7). For frequency modu-
lated oscillations one obtains indeed the instantaneous
frequency as %, while £(7,7) is constant with re-
spect to 7. For some examples a (nearly) optimal o (#)
might be known in advance, while in other case (e.g.
start-up of an oscillator) it might be necessary to de-
termine ®(¢) during the simulation, by enforcing the
smoothness condition (@).
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4 Discretization

We discretize (2)) with respect to T by a Rothe method
using a linear multi step method (e.g. Gear’s BDF or
the trapezoidal rule). This results in a periodic bound-
ary value problem in ¢ of the form



o 5 (X (1)) +fi (X, 1) =0, (5)
Xk(t) :Xk(t+P)a

where X;(¢) is the approximation of £(7,t) for the
k-th time step T;, while @y is an approximation of
®(7;). An optimal @y is determined with the condi-
tion

P 2 .
/0 1X,.(1) — X1 (1) dt — min, ©)

which is a good approximation of condition (@).

The periodic problem (3 can be solved by a col-
location or Galerkin method, where X (¢) is expanded
in a periodic basis {¢y} (as a Fourier, B-spline, or
wavelet basis) and tested at collocation points or inte-
grated against test functions, respectively. This leads
to a nonlinear system of equations for the coefficients
c¢ of the basis expansion X (1) = Yy cx ¢ 9¢(t). Here,
the condition (6) is replaced by the condition

Z”Ckl—ckfl,eH;Hmin. (7
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5 Example: A Phase Locked Loop

The method has been tested our method on several
circuits. To solve the periodic problem we have used
an adaptive spline wavelet method described in [1,2].
We show results from the multi-rate simulation of a
Phase Locked Loop (PLL) with a frequency modu-
lated input signal. Both the frequency parameter ®(7)
(Fig. |I|) determined by our method, and the control
signal of the oscillator (Fig. [2) reflect perfectly the in-
stantaneous frequency. The feedback signal in Fig. [3]
shows that the computed ®(7) leads indeed to optimal
smoothness.
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Fig. 1. Plot of simulated o(7).

Acknowledgement. This work was funded partly by the
Austrian Science Fund (FWF): P22549-N18, and the project
ARTEMOS No. 270683-2, by the FFG Austria and the
ENIAC Joint Undertaking.

References

1. K. Bittner and E. Dautbegovic. Adaptiv wavelet-based
method for simulation of electronic circuits. In Scientific

25
thys 0 tims

Fig. 2. Control signal for the oscillator in the PLL (multi-
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Fig. 3. Feedback signal of the PLL (multi-rate).
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