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Summary. High order surface impedance boundary condi-
tions (SIBCs) have been coupled with the Boundary Ele-
ment Method (BEM) to produce an integral formulation for
the computation of the impedance matrix of multiconduc-
tor transmission lines of arbitrary cross-section [1, 2]. The
method extends the use of SIBCs into lower frequencies and
does so efficiently in that the solution of the integral equa-
tions need only be computed once whereas the solution may
be obtained over the whole applicable frequency domain. In
the case of different conductivities of the parallel conduc-
tors, care must be taken in the perturbation expansion when
the formulation is derived. The use of NURBS gives a bet-
ter representation of complex geometries and helps in the
computation of the radius of curvature and of the tangen-
tial derivatives of the unknowns. As a realistic application,
the per-unit-length parameters of sector shaped cables are
computed, showing the accuracy of the method.

1 Non-uniform rational B-splines

Recently, the so-called Isogeometric Analysis method
was introduced in the context of mechanical engineer-
ing [3], with the aim of improving the communica-
tion between Computer Aided Design (CAD) soft-
ware and numerical solvers. The method can be un-
derstood as a generalization of finite elements, where
the standard polynomial shape functions are replaced
by the functions used by CAD to describe the geome-
try.

The most widespread functions in CAD are prob-
ably non-uniform rational B-splines (NURBS), due to
their flexibility and their capability to design smooth
geometries. To define a NURBS curve first it is nec-
essary to introduce a partition of a reference interval.
NURBS basis functions are defined on this partition
as a set of piecewise rational polynomials. The curve
is then created as a linear combination of these basis
functions, by associating a control point to each one
of them [4].

The method we propose is based on NURBS to
represent the contour of the cross section of the con-
ductors, whereas the discrete solution is sought as a
non-rational spline. The use of NURBS not only gives
a good representation of complex geometries, but it
also allows an exact computation of the radius of cur-

vature, as required by high order SIBCs. Moreover,
a discretization based on high order B-splines is nec-
essary to compute the tangential derivatives appear-
ing in high order SIBCs, which can not be accurately
computed with low order BEM.

2 Integral formulation of the problem

We work on a two-dimensional geometry. Assume
that we have N different conductors, where electric
currents of intensity I j, j = 1, . . . ,N flow. We denote
by Γj the boundary of their cross sections. We choose
an eddy-current model written in terms of the mag-
netic vector potential A. In the 2D case this vector is
parallel to the conductors axis, for which A = Aez.

Splitting the potential into “source” and “eddy”
components, A = As +Ae, our continuous problem be-
comes

∆Ae = iωµσAe,
∫

Γj
1
µ

∂Ae

∂n = I j, (1)

[Ae]Γj =−As,
[

∂Ae

∂n

]
Γj

= 0, Ae = O
(

1
|r|

)
, |r| →+∞,

where As is an unknown, and is constant for each con-
ductor.

Denoting by G(r,r′) the fundamental solution of
the 2D Laplace equation, we define the integral oper-
ators associated to the single and double layer poten-
tials

S ju(r) =
∮

Γj

G(r,r′)u(r′)dγ(r′), (2)

D ju(r) =
∮

Γj

∂G(r,r′)
∂nr′

u(r′)dγ(r′), (3)

and denoting by K =
∂Ae

ext

∂n
, the solution of our prob-

lem satisfies the integral equation

As(r)+
N

∑
j=1

S jK(r) =
(
−I
2

+
N

∑
j=1

D j

)
Ae

int(r). (4)

3 Approximation by SIBCs

SIBCs can be applied whenever the skin depth



2

δ =

√
2

ωµσ
, (5)

is “small enough”. Following [1,5], the fields are writ-
ten as asymptotic expansions in terms of δ , in the
form:

Ae
int(r,δ )'

3

∑
i=0

Ae,i
int(r)δ

i, (6)

As(r,δ )'
3

∑
i=0

As,i(r)δ i, K(r,δ )'
3

∑
i=0

Ki(r)δ i,(7)

and denoting the curvature of Γ by C , and by ∂ 2u
∂τ2 the

second tangential partial derivative, it holds:

Ae,i
int =

i

∑
l=1

ψl(Ki−l), with ψ1[u] = u,

ψ2[u] =
C

2
u, ψ3[u] =

3C 2

8
u+

1
2

∂ 2u
∂τ2 .

(8)

We then solve sequentially the problem, for i =
0, . . . ,3

As,i(r)+
N

∑
j=1

S jKi(r) =(
−I
2

+
N

∑
j=1

D j

)( i

∑
l=1

ψl(Ki−l(r))
)

,

(9)

together with the intensity conditions:
∫

Γj

1
µ

K0 = I j,

and
∫

Γj

1
µ

Kl = 0, for l = 1,2,3.

4 The case of different conductivities

Let us assume that the electrical conductivity of each
conductor is σ j, j = 1, . . . ,N, and define the small pa-
rameter for each conductor, δ j, as in (5). It is also
necessary to define a small parameter for the exte-
rior domain, that we can take, for instance, δ0 = δN .
With this choice of small parameters, we rewrite the
asymptotic expansions (7) based on δ0, whereas the
expansion (6) is written with a different δ j in each
conductor. Since the small parameters are different
for the conductors and the insulator, when consider-
ing the continuity conditions on the interface, it is not
possible just to equate the terms with the same coef-
ficients, but we must adjust the equations multiplying
and dividing some terms by powers of δ0.

5 Three sector-shaped cable

We have applied the method to the simulation of a
three sector-shaped cable with a shield, as the one
shown in Fig. 1. Each sector is made of copper, with

σ = 5.8× 107 S/m, and for the shield the electrical
conductivity is σ = 1.1×106 S/m. We notice that the
corners of each sector have been rounded, because the
SIBCs can only be applied in smooth geometries.

25 mm

19 mm

4.255 mm

Fig. 1. Geometry of the three sector-shaped cable

The contour of each sector is parametrized with
a quadratic NURBS with 9 elements, and the shield
with a quadratic NURBS formed by 4 elements. Then,
the problem is solved in a refined mesh formed by 45
elements on each conductor, and 20 elements on the
shield. Our results are compared in Fig. 2 with the
ones given by a commercial FEM software, in a mesh
formed by 187607 elements.
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Fig. 2. P.u.l. self-resistance and self-inductance for one sec-
tor of the three sector cable
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