Transmission line parameters computed by NURBS-based impedance
boundary conditions: the case of different conductivities
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Summary. High order surface impedance boundary condi-
tions (SIBCs) have been coupled with the Boundary Ele-
ment Method (BEM) to produce an integral formulation for
the computation of the impedance matrix of multiconduc-
tor transmission lines of arbitrary cross-section [1,2]. The
method extends the use of SIBCs into lower frequencies and
does so efficiently in that the solution of the integral equa-
tions need only be computed once whereas the solution may
be obtained over the whole applicable frequency domain. In
the case of different conductivities of the parallel conduc-
tors, care must be taken in the perturbation expansion when
the formulation is derived. The use of NURBS gives a bet-
ter representation of complex geometries and helps in the
computation of the radius of curvature and of the tangen-
tial derivatives of the unknowns. As a realistic application,
the per-unit-length parameters of sector shaped cables are
computed, showing the accuracy of the method.

1 Non-uniform rational B-splines

Recently, the so-called Isogeometric Analysis method
was introduced in the context of mechanical engineer-
ing [3], with the aim of improving the communica-
tion between Computer Aided Design (CAD) soft-
ware and numerical solvers. The method can be un-
derstood as a generalization of finite elements, where
the standard polynomial shape functions are replaced
by the functions used by CAD to describe the geome-
try.

The most widespread functions in CAD are prob-
ably non-uniform rational B-splines (NURBS), due to
their flexibility and their capability to design smooth
geometries. To define a NURBS curve first it is nec-
essary to introduce a partition of a reference interval.
NURBS basis functions are defined on this partition
as a set of piecewise rational polynomials. The curve
is then created as a linear combination of these basis
functions, by associating a control point to each one
of them [4].

The method we propose is based on NURBS to
represent the contour of the cross section of the con-
ductors, whereas the discrete solution is sought as a
non-rational spline. The use of NURBS not only gives
a good representation of complex geometries, but it
also allows an exact computation of the radius of cur-

vature, as required by high order SIBCs. Moreover,
a discretization based on high order B-splines is nec-
essary to compute the tangential derivatives appear-
ing in high order SIBCs, which can not be accurately
computed with low order BEM.

2 Integral formulation of the problem

We work on a two-dimensional geometry. Assume
that we have N different conductors, where electric
currents of intensity /;, j = 1,...,N flow. We denote
by I} the boundary of their cross sections. We choose
an eddy-current model written in terms of the mag-
netic vector potential A. In the 2D case this vector is
parallel to the conductors axis, for which A = Ae,.

Splitting the potential into “source” and “eddy”
components, A = A%+ A€, our continuous problem be-
comes
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where A® is an unknown, and is constant for each con-
ductor.

Denoting by G(r,r’) the fundamental solution of
the 2D Laplace equation, we define the integral oper-
ators associated to the single and double layer poten-
tials
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and denoting by K = , the solution of our prob-

lem satisfies the integral equation
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3 Approximation by SIBCs

SIBCs can be applied whenever the skin depth
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is “small enough”. Following [1,5], the fields are writ-
ten as asymptotic expansions in terms of 9, in the
form:
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and denoting the curvature of I" by %, and by % the
second tangential partial derivative, it holds:
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We then solve sequentially the problem, for i =
0,...,3
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together with the intensity conditions: / EKO =1,
I
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and/ —Kk'=0, for1=1,2,3.
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4 The case of different conductivities

Let us assume that the electrical conductivity of each
conductor is 0}, j =1,...,N, and define the small pa-
rameter for each conductor, 5j, as in @) It is also
necessary to define a small parameter for the exte-
rior domain, that we can take, for instance, 6y = Oy.
With this choice of small parameters, we rewrite the
asymptotic expansions (7)) based on &, whereas the
expansion (6) is written with a different §; in each
conductor. Since the small parameters are different
for the conductors and the insulator, when consider-
ing the continuity conditions on the interface, it is not
possible just to equate the terms with the same coef-
ficients, but we must adjust the equations multiplying
and dividing some terms by powers of &.

5 Three sector-shaped cable
We have applied the method to the simulation of a

three sector-shaped cable with a shield, as the one
shown in Fig. [T} Each sector is made of copper, with

6 = 5.8 x 107 S/m, and for the shield the electrical
conductivity is ¢ = 1.1 x 10® S/m. We notice that the
corners of each sector have been rounded, because the
SIBCs can only be applied in smooth geometries.
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Fig. 1. Geometry of the three sector-shaped cable

The contour of each sector is parametrized with
a quadratic NURBS with 9 elements, and the shield
with a quadratic NURBS formed by 4 elements. Then,
the problem is solved in a refined mesh formed by 45
elements on each conductor, and 20 elements on the
shield. Our results are compared in Fig. [2] with the

ones given by a commercial FEM software, in a mesh
formed hv 1R7A07 elemente
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Fig. 2. P.u.l. self-resistance and self-inductance for one sec-
tor of the three sector cable
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