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Abstract In this paper an improved version of the conven- based orcMRES sensibly reduces the computational
tional shooting method based on the Newton iterative algoeffort [6]. TheGMRES method builds the Krylov base
rithm is presented. One of the main drawbacks of the shootzz — [Mp , sz, ..M "p} whereM € RNxN andp €

ing method is due to the determination of the fundamentaIRN is a “tentative” vector. I spans the solution of

matrix by means of a product of partial matrices that limits the steady state problem with respect to a given error

its application to medium size circuits. Fundamental ma-th hold. th lution is f di trix b ¢
trix free approaches have been presented in literaturg, the reshold, . € solution Is foun ngma nix ,y yec or
ducts with a total cost $n x N<. The gain is thus

are based on the use of tharREs method that lowers the Product .
computational effort from that of matrix by matrix product Proportional to a facto(N — n). Consider now
to that of matrix by vector product. In this paper a different

approach is presented that exploits the properties obthe dx +G(x,t)=0
decomposition to determine the leading dynamics of the cir- dt (1)
cuit, i.e. the working modes represented by the eigenvector X(t+T)—x(t)=0

of the circuit fundamental matrix associated to the Floquet

exponents with the smaller negative real part. This can-drasyhereG(x,t) : RN+ — RN, models the vector field,

tically reduce the number of matrix by vector products as iny < RN js the solutiont € R+ represents time arile

the GMRES method, but still makes available the main and R* is the working period. Assume to solve Eq. (1) in

most useful portion of the fundamental matrix, which is athe time domain with the simple Implicit Euler inte-

key element, for example, in the determination of the stabil . . . . .

ity of circuits working in a steady state condition. gration method and consider one integration time step
of lengthh € R*, fromt, toty, 1 =ty + h, we have

i X(t —X(tn) +hG(x(t )t =0.
1 Introduction (th1) —X(tn) (X(ths1),ths1)

By deriving this equation with respect to théyp) ini-
The shooting method, in contrast to harmonic bal-tial condition we obtain
ance, is well suited to compute the steady state be-
haviour of strong non-linea? circuits and i}[/S impor- dX(tr+1) _ dX(tn) | G(X(tnra),tnsa) dX(tns)
tance has been recently strengthened to the reliabledX(to)  dX(to) dx(ts1) dx(to)
extension of this approach to mixed-signal problem
[2]. Its “engine” is based on a time domain anal-
ysis that solves the DAE modeling the circuit with
a variable time step integration method [1, 5]. Time
domain analyses computes the residue, i.e. the dif- 3
ference among state variable values at the beginning dXn+1 <1 Jrhd(3(><n+1,'in+1)) dXn ?)
and at the end of the integration time interval, and dxo N dXni1 dxo
the sensitivity matrix, also known as the fundamen- ] ) ] ] ]
tal matrixM, that relates variations of state variableshereln is the order N identity matrix and subscript
at the end of the integration period to those at the beo "€fers to time instanty. To compute produdvip,

ginning. One of the main drawbacks of the shooting®!ther theMn matrices withn = [1,...., S/ in Eq. (2)
method is that its application is limited to medium or thexn solution vectors must be stored and this can

size circuits. This is due to the fact thit is de- P€ problematic when dealing with large circuits. The

. . . i i i i 2 _
rived as a product of partial matrices each computedMPlémentation chosen in our simulatean < fol

at each integration time step of the time domain anall0Ws the second solution to minimise memory usage.
ysis. If we assume that the circuit is characterised byl Nerefore, to comput#ip, G(Xn11,tni1) is reevalu-

N state variables and that the integration is performedt€d at each time point, thé ., matrix is recom-
on S time points, the effort to computd, which puted (at the cost of one LU factorisation) and the

in general is full, is proportional to 8 N3 [7]. The 2 Our simulatorpaN is available at the URLhtt p://
introduction of the “matrix free” shooting methods  pr anbi I a. ws. dei . polimi.it.

From which the sensitivity ok(tn;+1) with respect to
X(tg) can be immediately computed as
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left matrix by vector product is performed.
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2 The pl‘OpOSGd approach Figure 1. The schematic of the fourth order nonlinear ladder
_ circuit. Cy = 1uF, Ry = 1KQ, e(t) = 10sin(200mt).
According to Floquet theory, matrM can be decom-

q . . .
posed as 3 Simple simulation example

N
M= eMviug (4) _ _ o

K=1 The schematic of a simple example circuit is shown
where), are the Floquet exponents bF anduy, Vi in Fig. 1. It is a nonlinear ladder circuit with 4 state
are the corresponding right and left eigenvectors [3]variables. The working period of the circuit &=
The boundary value problem defined in Eq. (1) can belOms. AfterT /4, a QR decomposition &fl ; s3 gives
solved with the Newton iterative method

) 01 O —01 01
N B 0 97x10%4-70x10492x10*

+1 T T _
X§T=x5— <Z M Tvyug — 1N> (X§—xg) Risi=1| 0 —20x10%86x107
k=1 0 0 0 18x 1079

wherep s the iteration index anldg is an approxima- _ 5
tion of the initial condition. If we sort in decreasing Settinga =107, the last two rows oRy s1 can be set

order the Floquet exponents and set to 0 those having 0. i.€. the leading dynamics is adequately spanned

a real part considerably less thafA;) we have by the first two columns 0Q; s1. The maximum rel-
. ative error in computing the Floquet multipliers of
XoP ! = xh— (M - ]1N) (x€—xf) M is less than & 10~ showing the effectiveness of

the proposed method. This approach has been applied
whereM = yN LTyl € RVNis a rank L ma-  also to the oscillator described in [4] characterized
trix that represents tHeading dynamicsef the system by about 500 state variables. With the proposed ap-
modeled by Eq. (1) anif " is the approximated new proach, choosing = 107, the leading dynamics is
tentative solution computed by the Newton method. spanned by only 41 columns Qfjust afterT /10.

Apparently, the “truncated” matrikl can be de-

rived only after having performed the complete ma-
trix product (3). On the other hand the leading dy-References
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