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Abstract In this paper an improved version of the conven-
tional shooting method based on the Newton iterative algo-
rithm is presented. One of the main drawbacks of the shoot-
ing method is due to the determination of the fundamental
matrix by means of a product of partial matrices that limits
its application to medium size circuits. Fundamental ma-
trix free approaches have been presented in literature, they
are based on the use of theGMRESmethod that lowers the
computational effort from that of matrix by matrix product
to that of matrix by vector product. In this paper a different
approach is presented that exploits the properties of theQR

decomposition to determine the leading dynamics of the cir-
cuit, i.e. the working modes represented by the eigenvectors
of the circuit fundamental matrix associated to the Floquet
exponents with the smaller negative real part. This can dras-
tically reduce the number of matrix by vector products as in
the GMRES method, but still makes available the main and
most useful portion of the fundamental matrix, which is a
key element, for example, in the determination of the stabil-
ity of circuits working in a steady state condition.

1 Introduction

The shooting method, in contrast to harmonic bal-
ance, is well suited to compute the steady state be-
haviour of strong non-linear circuits and its impor-
tance has been recently strengthened to the reliable
extension of this approach to mixed-signal problems
[2]. Its “engine” is based on a time domain anal-
ysis that solves the DAE modeling the circuit with
a variable time step integration method [1, 5]. Time
domain analyses computes the residue, i.e. the dif-
ference among state variable values at the beginning
and at the end of the integration time interval, and
the sensitivity matrix, also known as the fundamen-
tal matrixM , that relates variations of state variables
at the end of the integration period to those at the be-
ginning. One of the main drawbacks of the shooting
method is that its application is limited to medium
size circuits. This is due to the fact thatM is de-
rived as a product of partial matrices each computed
at each integration time step of the time domain anal-
ysis. If we assume that the circuit is characterised by
N state variables and that the integration is performed
on S time points, the effort to computeM , which
in general is full, is proportional to S×N3 [7]. The
introduction of the “matrix free” shooting methods

based onGMRES sensibly reduces the computational
effort [6]. TheGMRESmethod builds the Krylov base
B =

[
Mp ,M2p, . . . ,Mnp

]
whereM ∈RN×N andp ∈

R
N is a “tentative” vector. IfB spans the solution of

the steady state problem with respect to a given error
threshold, the solution is found inn matrix by vector
products with a total cost S×n×N2. The gain is thus
proportional to a factor(N−n). Consider now





dx
dt

+G(x, t) = 0

x(t +T)− x(t) = 0
(1)

whereG(x, t) : RN+1 → R
N, models the vector field,

x∈RN is the solution,t ∈R+ represents time andT ∈
R

+ is the working period. Assume to solve Eq. (1) in
the time domain with the simple Implicit Euler inte-
gration method and consider one integration time step
of lengthh∈R+, from tn to tn+1 = tn+h, we have

x(tn+1)− x(tn)+hG(x(tn+1), tn+1) = 0.

By deriving this equation with respect to thex(t0) ini-
tial condition we obtain

dx(tn+1)

dx(t0)
−

dx(tn)
dx(t0)

+h
G(x(tn+1), tn+1)

dx(tn+1)

dx(tn+1)

dx(t0)
= 0

from which the sensitivity ofx(tn+1) with respect to
x(t0) can be immediately computed as

dxn+1

dx0
=

Mn+1︷ ︸︸ ︷(1N +h
dG(xn+1, tn+1)

dxn+1

)−1 dxn

dx0
(2)

where1N is the order N identity matrix and subscript
n refers to time instanttn. To compute productMp ,
either theMn matrices withn = [1, . . . ,S] in Eq. (2)
or thexn solution vectors must be stored and this can
be problematic when dealing with large circuits. The
implementation chosen in our simulatorPAN 2 fol-
lows the second solution to minimise memory usage.
Therefore, to computeMp , G(xn+1, tn+1) is reevalu-
ated at each time point, theMn+1 matrix is recom-
puted (at the cost of one LU factorisation) and the

2 Our simulatorPAN is available at the URL:http://
brambilla.ws.dei.polimi.it.
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Mn+1

n

∏
k=1

Mkp (3)

left matrix by vector product is performed.

2 The proposed approach

According to Floquet theory, matrixM can be decom-
posed as

M =
N

∑
k=1

eλkTvku
T
k (4)

whereλk are the Floquet exponents ofM anduk, vk

are the corresponding right and left eigenvectors [3].
The boundary value problem defined in Eq. (1) can be
solved with the Newton iterative method

xp+1
0 = xp

0 −

(
N

∑
k=1

eλkTvku
T
k −1N

)−1(
xp

S− xp
0

)

wherep is the iteration index andxp
0 is an approxima-

tion of the initial condition. If we sort in decreasing
order the Floquet exponents and set to 0 those having
a real part considerably less thanℜ(λ1) we have

x̃0
p+1 = xp

0 −
(

M̃ −1N

)−1(
xp

S− xp
0

)

whereM̃ = ∑N−L
k=1 eλkTvkuT

k ∈RN×N is a rank L ma-
trix that represents theleading dynamicsof the system
modeled by Eq. (1) and̃xp+1

0 is the approximated new
tentative solution computed by the Newton method.

Apparently, the “truncated” matrix̃M can be de-
rived only after having performed the complete ma-
trix product (3). On the other hand the leading dy-
namics of the circuit can be computed by exploiting
properties of the QR decomposition as shown in the
sequel. Consider the product shown in Eq. (3) per-
formed using only the first S1 < S time samples. Con-
sider theQ1,S1R1,S1 = M1,S1P1.S1 QR decomposition
whereR1,S1 ∈ R

N×N is upper triangular andP1,S1 is
a permutation matrix sorting the diagonal ofR1,S1 in
decreasing order. We set to 0 ther i, j entries ofR such
that r i,i < α |r1,1|. It can be shown that|r i,i | >

∣∣r i, j
∣∣

with j > i so that N− L last columns ofQ1,S1 can
bedroppedin the subsequent left matrix product per-
formed to compute the fundamental matrix. A QR
decomposition can be performed after a predefined
number of integration time steps. The structure ofR
can be thus checked to see if other columns of the re-
latedQ matrix can be dropped. At the end of this pro-
cess, i.e. at the end of the integration process along
the T working period, we have performed no more
than S× (N−M)×N2 matrix by vector products (as
with GMRES), with the advantage of having computed
a version ofM̃ representing the leading dynamics of
the system, i.e. that has the same(N−L) eigenvalues
and eigenvectors of theM fundamental matrix and,
finally, with the advantage of avoiding the storage of
partial matrices or solutions.
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Figure 1.The schematic of the fourth order nonlinear ladder
circuit. Cx = 1µF, Rx = 1kΩ, e(t) = 10sin(200πt).

3 Simple simulation example

The schematic of a simple example circuit is shown
in Fig. 1. It is a nonlinear ladder circuit with 4 state
variables. The working period of the circuit isT =
10ms. AfterT/4, a QR decomposition ofM1,S1 gives

R1,S1=




−0.1 0 −0.1 −0.1
0 9.7×10−4 −7.0×10−4 9.2×10−4

0 0 −2.0×10−6 8.6×10−7

0 0 0 1.8×10−9




Settingα = 10−3, the last two rows ofR1,S1 can be set
to 0, i.e. the leading dynamics is adequately spanned
by the first two columns ofQ1,S1. The maximum rel-
ative error in computing the Floquet multipliers of
M is less than 6×10−4 showing the effectiveness of
the proposed method. This approach has been applied
also to the oscillator described in [4] characterized
by about 500 state variables. With the proposed ap-
proach, choosingα = 10−7, the leading dynamics is
spanned by only 41 columns ofQ just afterT/10.
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