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Summary. A recipe is introduced for the determination of
streamer inception regions and streamer propagation paths
from the electric background field. The method is based on
the equivalence of the streamer inception integral with a first
order partial differential equation (PDE). It can be easily
used in modern commercial multi-physics simulation tools,
and circumvents the cumbersome search for critical field
lines and their postprocessing.

Introduction

Streamer inception (SI) at an electrode and subse-
quent streamer propagation (SP) towards the counter
electrode are initial steps of dielectric gas breakdown
in nonuniform high electric fields [1]. Often, the aim
of electric field calculations is to identify the loca-
tions where SI can occur and to determine how far
streamers can propagate. This note introduces a sim-
ple procedure to calculate SI and SP from quasi-static
electric background fields using common SI and SP
criteria [1, 2].
We thus assume that the solution of the Laplace equa-
tion for the electric potential U(x) in the compact spa-
tial region of interest, Ω ⊂R3, is given for appropriate
boundary conditions. The boundary of Ω is denoted
by ∂Ω . Let the potential be positive at the electrode
under consideration, ∂Ω0 ⊂ ∂Ω , i.e., U0 =U(x)> 0
for x ∈ ∂Ω0 (Dirichlet boundary condition). Assume
further that the potential at the counter electrode(s)
is smaller, for instance grounded, such that the field
lines of the electric field, E =−∇U , point away from
∂Ω0. The SI criterion is associated with the critical
electron avalanche size and is formulated as an inte-
gral condition to the effective ionization coefficient
α(E) along a field-line path γ where α is positive and
which ends at ∂Ω0 [1, 2],1∫

γ
α(E)ds ≥Ccrit (1)

with field strength E(x) =| E |. For a field distribution
E(x) in an arbitrary geometry, it is not a priori obvi-
ous which are the critical field lines satisfying Eq. (1);
they are not necessarily related to electrode locations
with maximum field.

1 The integral (1) gives lnN/N0, where N is the number
of electrons in an avalanche, and N0 is the number of
starting electrons. For negative α , electrons recombine
or are attached.

The required search for and extraction of information
on field lines from electric simulations for realistic ge-
ometries, as it is needed for (1), is usually not a fea-
ture provided by typical commercial E-field simula-
tion tools. But we will show that there is a simple way
to determine the critical SI region Γ ⊂ Ω , and thus
the critical electrode region, ∂Γ0 = Γ ∩∂Ω0, without
cumbersome postprocessing.

Streamer Inception (SI)

We introduce the scalar field variable ϕ(x), which sat-
isfies the 1st order PDE

−v ·∇ϕ = α(E)Θ(α) (2)

where Θ is the Heaviside theta-function such that the
right side vanishes for negative α , and

v(x) =
E
E

(3)

is the normalized vector field along the field lines.
Equation (2) means that the derivative of ϕ along the
backward direction of the field lines (i.e., towards the
electrode ∂Ω0), equals α . Hence the solution of Eq.
(2) is the integral of α along field lines and equal to
the streamer integral (1), provided ϕ = 0 in regions
where α ≤ 0. The latter condition is ensured by using
a homogeneous Dirichlet boundary condition, ϕ = 0,
at the counter electrode(s), where the flow lines of v
end. The theta-function in Eq. (2) ensures integration
only for α ≥ 0. The SI region Γ , where streamers will
emerge, is then obtained from ϕ(x) ≥Ccrit. Note that
because Γ ⊂ Ω is a volume region, the procedure al-
lows also the determination of electrodeless SI.

Steamer Propagation (SP)

A SP model has to predict where and how far the
emerging streamers will go. If they reach the counter
electrode, dielectric breakdown may occur. Streamer-
to-leader transition is not discussed here [4]. A simple
SP model makes use of the observation that a streamer
length increase requires a roughly constant voltage
drop, which can be associated with a field Es along
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the streamer path. The potential drop along a streamer
of length s is then [4]

Us(s) =Us,0 +Ess (4)

where Us,0 can be interpreted as the streamer head
voltage. If it is assumed that streamers follow field
lines, the path can be found by solving the ordinary
differential equation (ODE) for the location x(t) of,
say, the streamer head

dx
dt

= v(x)h(∆U, t) (5)

with initial condition x(0) ∈ ∂Γ (or, here, Γ0) for
t = 0, and ∆U =U0 −U(x) is the voltage drop along
the streamer line. Note that t is equal to the streamer
length s because | v |= 1 (v is not the true streamer
velocity but its direction vector; the true speed, which
is typically of the order of mm/ns [3] is not needed
for determining the streamer length for many practi-
cal cases). The prefactor h(∆U, t) is either 1 or 0, de-
pending on whether the SP criteria is satisfied or not.
The prefactor h ensures that the streamer stops if the
local potential drop is insufficient for further propaga-
tion. For brevity, the considerations are here restricted
to Us,0 = 0, where h =Θ(∆U −Ess).
The assumption that streamers follow field lines may
not always be valid, as was critically discussed in
Refs. [4, 5]. Nevertheless, generalized models might
be taken into account in our simple propagation model
by a redefinition of v(x) in Eq. (5) [4].

Results

The incorporation of our SI approach in typical com-
mercial multi-physics simulation tools, which usually
solve 2nd order PDEs, requires a mimicry of the 1st

order PDE (2) with a 2nd order PDE of the form
D∆ϕ − v ·∇ϕ = α(E). The structural difference be-
tween them leads to a singularly perturbed problem
(i.e., the limit D→ 0 is not equivalent to D= 0). How-
ever, the solution of Eq. (2) can be approximated with
sufficient accuracy for practical purposes, if D is small
enough and the boundary conditions to ϕ are appro-
priately chosen. In particular, the disturbance of the
solution by the boundary condition at ∂Ω0 should be
negligibly small. Because for D = 0 one has ∂sϕ = α
at ∂Ω0, one must have D ≪ 1/ | ∂E ln(α)∂sE |, and
the boundary condition must be n ·∇ϕ = −α , where
n denotes the surface normal vector at ∂Ω0.
As an example, we consider a tip-plate geometry in
normal air, where [6] α = p[k(E

p − Λ)2 − A] with
k = 1.6 mmbar/kV2, Λ = 2.2 kV/(mm bar), A = 0.3
1/(mm bar), p = 1 bar, tip-plate distance 19 cm, tip ra-
dius 1 cm, and Es = 0.5 kV/mm. A result for U0 = 80
kV is shown in Fig. 1; the SI voltage, when the first
streamer appears is ca. 67 kV. The SI region is visible

as the small dark area in front of the tip. The voltage
when the first streamer crosses the gap is for this case
Ubd = 95 kV.

Fig. 1. Tip-plate geometry with simulated equipotential
curves, SI region in front of the tip (insert), and streamer
lines (simulation tool: Comsol; streamer lines with ”parti-
cle tracing” feature).

Conclusion

Streamer lines associated with the common SI and SP
criteria used in electrical engineering, can be calcu-
lated directly from standard multi-physics simulation
tools without cumbersome postprocessing of electric
field line data, provided the tool exhibits at solvers
for an additional linear PDE (for SI) and an ODE (for
SP).
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