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Summary. We use a Stroud-based collocation method to
analyze the parameter behavior of the time-harmonic Max-
well equations and reduce the computational costs by ap-
plying model order reduction to the system matrices.

1 Motivation

During the design process of semiconductor struc-
tures, simulations of new micro and nano scale sys-
tems are essential due to, e. g., the expensive produc-
tion of prototypes. An important aspect is the ongo-
ing miniaturization of the structures on the one hand
and the increase in the working frequencies on the
other hand. The high density of electric conductors
induces parasitic effects, e. g., crosstalk, which have
to be considered already in the design stage. There-
fore, the exact knowledge of the semiconductor struc-
tures and the surrounding electromagnetic (EM) field
is necessary.
Another effect, which plays a no longer negligible
role, is the variation of the feature structure size caused
by inaccuracies of the resolution during the lithogra-
phy. To consider these variations in the simulation,
models with parametric uncertainties are required. A
variational analysis of the effect of these uncertain-
ties on the EM field requires methods for uncertainty
quantification (UQ) [4, 6]. For this purpose, we will
employ non-intrusive approaches as they allow the
use of EM field solvers for deterministic problems
without accessing the source code. Possible choices
are Monte Carlo and stochastic collocation. Here we
will employ the latter due to their faster convergence.
Still, UQ via stochastic collocation requires numer-
ous full-order EM field solves which can be a time-
consuming task for complicated 3D geometries. It is
thus our goal to combine this approach with model or-
der reduction methods (MOR) for the Maxwell equa-
tions to reduce the computational cost, where the
reduced-order model needs to preserve the statisti-
cal properties of the full-order model. All these prob-
lems are addressed within the research network Model
Reduction for Fast Simulation of New Semiconduc-
tor Structures for Nanotechnology and Microsystems
Technology (MoreSim4Nano), see [5]. Figure 1 shows
a coplanar waveguide which serves as a benchmark

Fig. 1. Coplanar waveguide.

within MoreSim4Nano and for which we show some
numerical results in Section 4.

2 Stochastic Collocation for EM Field
Computations

The system of equations describing the EM field are
Maxwell’s equations

∂t(εE) = ∇×H−σE−J
∂t(µH) =−∇×E
∇ · (εE) = ρ

∇ · (µH) = 0,

with the electric field intensity E, the magnetic field
intensity H, the charge density ρ , the impressed cur-
rent source J, and material parameters ε = εr ·ε0 (per-
mittivity), µ = µr · µ0 (permeability), σ (electrical
conductivity). For simplification, we work with the
time-harmonic form

∇× (µ−1
∇×E)+ iω σ E−ω

2
ε E = iω J, (1)

on the space X = {E ∈ H0
curl |∇ · (εE) = ρ}.

Up to now, we consider the material parameters εr, µr,
and σ as uncertain. For the examination of their influ-
ence on the statistical behavior of the solution E we
use stochastic collocation [1] with Stroud interpola-
tion points [2].

2.1 Stochastic Collocation

Collocation methods rely on interpolation. The idea is
to approximate high-dimensional integrals, e. g., the
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expectation value of our solution E, by an (efficient)
quadrature rule

E(E) =
∫

Γ

E(ξ ) f (ξ )dξ ≈
n

∑
i=1

E(ξi)wi.

Here Γ is the image of the probability space under
the probability measure, f is the unknown probability
density function of E, ξi are the n interpolation points
and wi are the associated weights.

2.2 Stroud Integration

The interpolation formula used in our algorithm was
introduced in 1957 by A. H. Stroud [7] and yields
either beta or normal distributed interpolation points
which are weighted by 1/n, where n is the number of
interpolation points as in Sec. 2.1. Though we need
εr, µr > 0 and σ ≥ 0, we suppose them to be log-
normal distributed and use the exponential of the nor-
mal distributed Stroud points as interpolation points.

3 Model Order Reduction

The discretization of (1) leads to the following system

µrAµ0e+ εrAε0 ë+σAė = Bu,

y =Ce,

where e is the discretized electric field, Aµ0 , Aε0 and
A are the parameter independent system matrices in
RN×N , u, y define the inputs/ outputs, and B,C spec-
ify the input/ output behavior. Here N is the number
of grid points in G and large. This system is then re-
duced, e. g., by means of rational interpolation meth-
ods as in [3] and we achieve a reduced system of the
form

µrÂµ0 ê+ εrÂε0
¨̂e+σ Â ˙̂e = B̂u,

ŷ = Ĉê,

where Âµ0 , Âε0 , Â ∈ Rr×r with r � N and ‖y− ŷ‖
small.

4 Numerical Results Concerning the
Stochastic Collocation Approach

As a benchmark we consider a coplanar waveguide
with dielectric overlay, see Figure 1. The model con-
sists of three perfectly conducting striplines situated
at a height of 10mm in a shielded box with perfect
electric conductor (PEC) boundary. The system is ex-
cited at one of the discrete ports and the output is
taken at the other one.
Below a height of 15mm there is a substrate with
ε1

r ≈ 4.4 and σ1 ≈ 0.02S/m, above there is air with

ε2
r ≈ 1.07 and σ2 ≈ 0.01S/m, while µr ≈ 1 within

the whole box. The variance of each parameter is ap-
proximately 1% of the expected value.
The system is treated as a system with 5 uncertain pa-
rameters, which leads to the affine discretized form

µrAµ0e+(ε1
r A1

ε0
+ ε

2
r A2

ε0
)ë+(σ1A1 +σ

2A2)ė = Bu,

y =Ce.

The discretization is done in FEniCS by use of Nédé-
lec finite elements and the Stroud-based collocation
is implemented in MATLAB R©. Since the used dis-
cretization has only 18755 degrees of freedom, there
is no model order reduction used up to now.
The Stroud-based collocation uses only 10 support-
ing points and the computation requires less than a
minute. To verify the accuracy, the results are com-
pared with a Monte Carlo simulation which oper-
ates on 10000 interpolation points. This takes several
hours. Using the frequency ω = 0.6 · 109 we achieve
the following relative errors for the expected value of
e and y

errrel,E(e) = 0.0038% and errrel,E(y) = 0.0042%.

Considering the fact that we use only 10 Stroud points
the results are satisfactory. To achieve more accuracy
one could use, e. g., a lot more sparse grid points,
which would be much more expensive. For this reason
and for systems of higher dimension we need MOR.
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