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Summary. The Reduced Basis Method generates low-order
models of parametrized PDEs to allow for efficient evalua-
tion of parametrized models in many-query and real-time
contexts.

We show the theoretical framework in which the Re-
duced Basis Method is applied to Maxwell’s equations and
present first numerical results for model reduction in fre-
quency domain.

1 Introduction

The Reduced Basis Method (RBM) generates low or-
der models for the efficient solution of parametrized
PDEs in real-time and many-query scenarios. The
RBM employs rigorous error estimators to perform
the model reduction and measure the quality of the
reduced simulation. In recent years, the RBM has
been developed to apply to a wide range of prob-
lems, of which [1] and the references therein, give an
overview.

We address the use of the RBM in time-harmonic
electromagnetic problems, which can exhibit param-
eter variations in geometry, material coefficients and
frequency. We use the RBM in large 3D problems,
that arise in the analysis of microscale semiconductor
structures.

2 Model Problem

As an example model, we consider the coplanar waveg-
uide, depicted in Fig. 1. The model setup is con-
tained in a shielded box with perfect electric conduct-
ing (PEC) boundary. We consider three perfectly con-
ducting striplines as shown in the geometry. The sys-
tem is excited at a discrete port and the output is taken
at a discrete port on the opposite end of the middle
stripline. These discrete ports are used to model input
and output currents/voltages.

2.1 Constitutive Equations

We consider the second order time-harmonic formu-
lation of Maxwell’s equations in the electric field E

∇×µ
−1

∇×E + iωσE−ω
2
εE = iωJ in Ω , (1)
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Fig. 1. Geometry of coplanar waveguide.

subject to zero boundary conditions

E×n = 0 on ΓPEC. (2)

We use the weak formulation to (1) with bilinear
form a(·, ·;ν) and linear form f (·;ν) as

a(E(ν),v;ν) = f (v;ν) ∀v ∈ X , (3)

where ν ∈ D ⊂ Rp denotes the parameter vector,
E(ν) is the parameter-dependent electric field, v a test
function and X the H(curl)-conforming finite element
space, discretized with Nédélec finite elements.

All the model problems which are used in this
work have been developed in the MoreSim4Nano
project [3].

3 Reduced Basis Method for
time-harmonic EM-problems

The aim of the RBM is to determine a low order space
XN of dimension N, which approximates the paramet-
ric manifold

Mν = {E(ν)|ν ∈D} (4)

well. Given such a space XN , it is possible to gain ac-
curate approximations EN(ν) to E(ν) by solving (3)
in XN

a(EN(ν),vN ;ν) = f (vN ;ν) ∀vN ∈ XN , (5)
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i.e. projecting (3) onto XN .
An integral part in the model reduction are error

estimators ∆N(ν), which give rigorous bounds to the
approximation error in the H(curl) norm

‖E(ν)−EN(ν)‖X ≤ ∆N(ν). (6)

Additionally, the RBM requires to have fast evalu-
ations of the error estimator in the sense that the com-
plexity is O(N), i.e. independent of the large discreti-
sation of the full model. The necessary requirement is
an affine decomposition of the forms as

a(E(ν),v;ν) =
Q

∑
q=1

Θ
q(ν)aq(E(ν),v). (7)

3.1 Error Estimation

The error estimator in the field is given by

∆N(ν) =
‖r(·;ν)‖X ′

βLB(ν)
, (8)

with ‖r(·;ν)‖X ′ the dual norm of the residual and
βLB(ν) a lower bound to the inf-sup stability constant.

For error estimation in the output, the adjoint equa-
tion is solved to obtain the dual residual rdu(·;ν), such
that

∆
s
N(ν) =

‖rpr(·;ν)‖X ′

(βLB(ν))1/2

‖rdu(·;ν)‖X ′

(βLB(ν))1/2 , (9)

gives rigorous bounds in the output. Here, rpr(·;ν) de-
notes the original, primal residuum.

3.2 Geometric Parameters

To consider the linear combination of snapshots for
different geometries, the PDE is transformed from the
parameter-dependent domain Ω(ν) to a parameter-
independent reference domain Ω(ν).

Given a domain decomposition of Ω(ν), such that
each domain under consideration can be found under
affine transformations of the subdomains, the affine
decomposition (7) is possible and therefore allows the
Reduced Basis model reduction.

4 First Numerical Results

The full simulation has been performed with the finite
element package FEniCS using a discretization with
first order Nédélec finite elements. For our first nu-
merical experiments, we used a coarse discretization
of 2048 degrees of freedom. To work with geometric
variations, a larger resolution is required.

Fig. 2 shows the transfer function of the coplanar
waveguide. In our simulations, we applied the RBM

Fig. 2. Frequency response of coplanar waveguide.

over the frequency range [0.6,3.0] GHz. The time-
harmonic equations are already stated in the affine
form (7).

In Fig. 3, the relative approximation error for the
order N = 30 and N = 50 are shown. In the case of
N = 50, the relative error is already below 0.01%.
Overall, the RBM achieves fast convergence in that
the full model is approximated to machine precision
with a space XN of order 75 for the considered param-
eter range.

Fig. 3. Log-plot of relative error for N = 30 (left) and N =
50 (right).
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