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Summary. In this note we study an integral formulation for
electromagnetic scattering by a biperiodic structure. It is de-
rived from the time-harmonic Maxwell equations via poten-
tial methods by the combined use of a Stratton-Chu integral
representation and an electric potential ansatz. We obtain
results on existence and uniqueness for the solutions of this
singular integral equation and give an outlook on the equa-
tion’s numerical treatment via the fast multipole Boundary
Element Method.

1 Introduction

Studying an integral formulation for electromagnetic
scattering by a biperiodic structure generalizes the re-
sults from [5] where the equivalent problem for one-
periodic structures was treated. Up to now, both in
the one- and the biperiodic case several integral for-
mulations have been proposed and implemented (e.g.
[4]). We derive a new formulation by adapting the ap-
proach of [2], in which instead of a periodic structure
a bounded obstacle was focussed on.

2 The electromagnetic scattering
problem

Let X be a smooth non-selfintersecting surface which
is 2z-periodic in both x;- and in x;-direction and sep-
arates two regions G4+ C R3 filled with materials of
constant electric permittivity €+ and magnetic perme-
ability 4. The surface is illuminated from G by an
electromagnetic plane wave at oblique incidence

(Ei,Hi) — (p7S)ei((xlxl+oc2x2—oc3)r3)e—ia)t’ (1)

which is &—quasiperiodicﬂ in x; and in x, of period
2r, i.e. satisfies the relation

U(E427,x3) = 27+ @)y(y), )
The total fields are given by

H, =H +H*" 3)
Hf — Htran (4)

E+ — Ei +Ereﬂ7
Ef — Etran

! In the following the tilde indicates the orthogonal projec-
tion of a three-dimensional vector on the (x,x;)-plane.

and - after dropping the factor e~/!

harmonic Maxwell equations

- satisfy the time-
curlE =iouH and curlH= —iweE, (5)

just like the incident and the scattered fields. When
crossing the surface the tangential components of the
total fields are continuous
nx (Ey—E_)=0,
nx (H—H_)=0,

onX, (6)
onX, (7

where n is the unit normal to the interface X. As the
domain is unbounded, we must additionally impose
the so called outgoing wave condition at infinity

(Ereﬂ7Hreﬂ) _ Z (E:7H2r)ei(06n-)?+l3;rx3)’ (8)
neZz?
(Etran’Htran) _ Z (E;,H;)€i<a”‘i_ﬁ’rx3)7 9)

neZ?

where n = (n1,n)T, = (x1,%2)7, &, = (0 +ny1, 00+

ny) and B = /K2 —|a,|? with k3 = w?es s, We

shall assume x; > 0, Rex_ > 0, Imx_ > 0. As we
can easily derive the magnetic field in dependence of
the electric field E as H = —churlE, we are now
interested in finding vector fields E satisfying (5)-(8)
such that

E, curlE € (L7, .(R?)>. (10)

The &-quasiperiodicity of the incident waves moti-
vates these two fields to be @&-quasiperiodic them-
selves.

3 Boundary integral formulation

In order to solve the electromagnetic scattering prob-
lem introduced in section 2] we derive an equivalent
integral equation via potential methods. For this, we
combine a direct with an indirect method: in the do-
main G, above the grating surface X, we work with
the quasiperiodic version of the Stratton-Chu inte-
gral representation and in the domain G_ below the
grating surface, we make use of an electric potential
ansatz. As it is common when working with periodic
structures, we restrict our calculations to one period
I' ={%| 0 <xy,x <2z} of the surface. Its one-sided
limit from G will be denoted by I..



2
3.1 Derivation of the boundary integral equation

The potentials which provide @&-quasiperiodic solu-
tions of the time-harmonic Maxwell equations are
based on the &-quasiperiodic fundamental solution

; 1O F+iBu x|
87 nez? ﬁ n

The single layer potential S 4 is then given by

Gra(x) = 11

(Sxat) () = [ Gralr—y)uly) doly), (12
for x € R?\ I'. We define the electric potential ¥
generated by j € H;%&(divr,l") as

'Pg(j =K ! curlcurl S¢ & (13)
and the magnetic potential 'P[gx generated by m €
H;%a(divr,l") as

¢ m = curl Sy gm. (14)

Defining the Dirichlet traces ¥ and the Neumann
traces W,

Hu=mxu)|n,Kwu=x"'@mxcurlu)ly (15)

as well as
_ 1, _
=% -%Ant=—30m+r), 16

_ 1, _
I =R =R Imd = =5 Ok 1) (A7)

we have the following jump relations for the electric
and magnetic potential:

(o] ¥ =0, [, B =1, (18)
(e BT =0, [y, = —1. (19)
With the Stratton-Chu ansatz

Ereﬂ — IPE(?(.+ ,}igk+ Ereﬂ 4 [I/I\(?IC ,}/SErCﬂ (20)

Kt
in G and the ansatz

E =W 1)
in G_, the use of the transmission conditions (6)),(7)
as well as the use of the jump relations (I8)),(T9) for

the electric and magnetic potential lead to the singular
integral equation

. _ 1 1 _].
Agj= {plcg (M& + 21) + (Mg+21) Ca],]

= _YBEia
(22)
where p; = ﬁf z; and
Ca = {WI¥E, ={w. W, (23

My = {p}Hi,, = (N JHE . (24

3.2 Properties of the boundary integral equation

We can show that the singular integral operator Ag
is Fredholm with index O and that under certain con-
ditions there exists a unique solution of the integral
equation (22). The proofs are based on techniques
used in [3], [2] and [5].

Theorem 1 (Fredholmness). Assume that the elec-
tric permittivity €1 and the magnetic permeability |1+

satisfy (1 n ﬁf) £ 0 and (1 ¥ i—j) £ 0. Then Ag is
_1
a Fredholm operator of index zero on H, %, (divr,I).

Theorem 2 (uniqueness). Assume Ime_,Imu_ >0
with Im(&; + p1) > 0. Then has at most one so-
lution ifker{‘PEofq} = {0}.

Theorem 3 (existence). Let €_,u_ € Ry and sup-
pose the conditions of Theorem[I| are satisfied. If the
electric potential 'PE"; is invertible, then there exists

_1
a solution j € H_ 7% (divr,I) 0f~

4 Numerical treatment and prospects

Considering the future implementation of the inte-
gral equation (22) we will use the Boundary Element
Method which reduces the spatial dimensionality by
one compared to the Finite Element Method. Further-
more, we want to accelerate occurring multiplications
via a fast multipole method. A crucial issue is the
evaluation of the @-quasiperiodic Green’s function
(TT). The use of Ewald’s method seems to be promis-
ing in this context (cp. [1]).

So far we have only studied the electromagnetic
scattering problem for smooth surfaces X, but want
to extend our results to Lipschitz surfaces with edges
and corners.
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