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Summary. In this note we study an integral formulation for
electromagnetic scattering by a biperiodic structure. It is de-
rived from the time-harmonic Maxwell equations via poten-
tial methods by the combined use of a Stratton-Chu integral
representation and an electric potential ansatz. We obtain
results on existence and uniqueness for the solutions of this
singular integral equation and give an outlook on the equa-
tion’s numerical treatment via the fast multipole Boundary
Element Method.

1 Introduction

Studying an integral formulation for electromagnetic
scattering by a biperiodic structure generalizes the re-
sults from [5] where the equivalent problem for one-
periodic structures was treated. Up to now, both in
the one- and the biperiodic case several integral for-
mulations have been proposed and implemented (e.g.
[4]). We derive a new formulation by adapting the ap-
proach of [2], in which instead of a periodic structure
a bounded obstacle was focussed on.

2 The electromagnetic scattering
problem

Let Σ be a smooth non-selfintersecting surface which
is 2π-periodic in both x1- and in x2-direction and sep-
arates two regions G± ⊂ R3 filled with materials of
constant electric permittivity ε± and magnetic perme-
ability µ±. The surface is illuminated from G+ by an
electromagnetic plane wave at oblique incidence

(Ei,Hi) = (p,s)ei(α1x1+α2x2−α3x3)e−iωt , (1)

which is α̃-quasiperiodic1 in x1 and in x2 of period
2π , i.e. satisfies the relation

u(x̃+2π,x3) = ei2π(α1+α2)u(x). (2)

The total fields are given by

E+ = Ei +Erefl, H+ = Hi +Hrefl, (3)

E− = Etran, H− = Htran (4)

1 In the following the tilde indicates the orthogonal projec-
tion of a three-dimensional vector on the (x1,x2)-plane.

and - after dropping the factor e−iωt - satisfy the time-
harmonic Maxwell equations

curlE = iωµH and curlH =−iωεE, (5)

just like the incident and the scattered fields. When
crossing the surface the tangential components of the
total fields are continuous

n× (E+−E−) = 0, on Σ , (6)
n× (H+−H−) = 0, on Σ , (7)

where n is the unit normal to the interface Σ . As the
domain is unbounded, we must additionally impose
the so called outgoing wave condition at infinity

(Erefl,Hrefl) = ∑
n∈Z2

(E+
n ,H+

n )ei(αn·x̃+β+
n x3), (8)

(Etran,Htran) = ∑
n∈Z2

(E−n ,H−n )ei(αn·x̃−β−n x3), (9)

where n =(n1,n2)T, x̃ =(x1,x2)T, αn =(α1 +n1,α2 +

n2) and β±n =
√

κ2
±−|αn|2 with κ2

± = ω2ε±µ±. We
shall assume κ+ > 0, Reκ− > 0, Imκ− ≥ 0. As we
can easily derive the magnetic field in dependence of
the electric field E as H = − i

ωµ
curlE, we are now

interested in finding vector fields E satisfying (5)-(8)
such that

E, curlE ∈ (L2
loc(R3)3. (10)

The α̃-quasiperiodicity of the incident waves moti-
vates these two fields to be α̃-quasiperiodic them-
selves.

3 Boundary integral formulation

In order to solve the electromagnetic scattering prob-
lem introduced in section 2, we derive an equivalent
integral equation via potential methods. For this, we
combine a direct with an indirect method: in the do-
main G+ above the grating surface Σ , we work with
the quasiperiodic version of the Stratton-Chu inte-
gral representation and in the domain G− below the
grating surface, we make use of an electric potential
ansatz. As it is common when working with periodic
structures, we restrict our calculations to one period
Γ = {x̃ | 0 < x1,x2 < 2π} of the surface. Its one-sided
limit from G± will be denoted by Γ±.
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3.1 Derivation of the boundary integral equation

The potentials which provide α̃-quasiperiodic solu-
tions of the time-harmonic Maxwell equations are
based on the α̃-quasiperiodic fundamental solution

Gκ,α̃(x) =
i

8π2 ∑
n∈Z2

eiαn·x̃+iβn|x|

βn
. (11)

The single layer potential Sκ,α̃ is then given by

(Sκ,α̃ u)(x) =
∫

Γ

Gκ,α̃(x− y)u(y) dσ(y), (12)

for x ∈ R3 \Γ . We define the electric potential Ψ α̃
Eκ

generated by j ∈H−
1
2
×,α̃(divΓ ,Γ ) as

Ψ
α̃

Eκ
j = κ

−1 curlcurlSκ,α̃ j (13)

and the magnetic potential Ψ α̃
Mκ

generated by m ∈

H−
1
2
×,α̃(divΓ ,Γ ) as

Ψ
α̃

Mκ
m = curlSκ,α̃ m. (14)

Defining the Dirichlet traces γD and the Neumann
traces γNκ

γ
±
D u = (n×u) |Γ± ,γ±Nκ

u = κ
−1 (n× curlu) |Γ± (15)

as well as

[γD] = γ
−
D − γ

+
D ,{γD}=−1

2
(
γ
−
D + γ

+
D
)
, (16)

[γNκ
] = γ

−
Nκ
− γ

+
Nκ

,{γNκ
}=−1

2
(
γ
−
Nκ

+ γ
+
Nκ

)
, (17)

we have the following jump relations for the electric
and magnetic potential:

[γD]Ψ α̃
Eκ

= 0, [γNκ
]Ψ α̃

Eκ
=−I, (18)

[γNκ
]Ψ α̃

Mκ
= 0, [γD]Ψ α̃

Mκ
=−I. (19)

With the Stratton-Chu ansatz

Erefl = Ψ
α̃

Eκ+
γ

α̃
Nκ+

Erefl +Ψ
α̃

Mκ+
γ

+
D Erefl (20)

in G+ and the ansatz

Etran = Ψ
α̃

Eκ+
j (21)

in G−, the use of the transmission conditions (6),(7)
as well as the use of the jump relations (18),(19) for
the electric and magnetic potential lead to the singular
integral equation

Aα̃ j =
[

ρ1C+
α̃

(
M−

α̃
+

1
2

I
)

+
(

M+
α̃

+
1
2

I
)

C−
α̃

]
j

=−γ
−
D Ei,

(22)

where ρ1 = µ+κ−
µ−κ+

and

C±
α̃

= {γD}Ψ α̃
Eκ±

= {γNκ±}Ψ
α̃

Mκ±
, (23)

M±
α̃

= {γD}Ψ α̃
Mκ±

= {γNκ±}Ψ
α̃

Eκ±
. (24)

3.2 Properties of the boundary integral equation

We can show that the singular integral operator Aα̃

is Fredholm with index 0 and that under certain con-
ditions there exists a unique solution of the integral
equation (22). The proofs are based on techniques
used in [3], [2] and [5].

Theorem 1 (Fredholmness). Assume that the elec-
tric permittivity ε± and the magnetic permeability µ±

satisfy
(

1+ µ−
µ+

)
6= 0 and

(
1+ ε+

ε−

)
6= 0. Then Aα̃ is

a Fredholm operator of index zero on H−
1
2
×,α̃(divΓ ,Γ ).

Theorem 2 (uniqueness). Assume Imε−, Im µ− ≥ 0
with Im(ε+ + µ+)≥ 0. Then (22) has at most one so-
lution if ker{Ψ α̃

Eκ+
}= {0}.

Theorem 3 (existence). Let ε−,µ− ∈ R+ and sup-
pose the conditions of Theorem 1 are satisfied. If the
electric potential Ψ α̃

Eκ−
is invertible, then there exists

a solution j ∈H−
1
2
×,α̃(divΓ ,Γ ) of (22).

4 Numerical treatment and prospects

Considering the future implementation of the inte-
gral equation (22) we will use the Boundary Element
Method which reduces the spatial dimensionality by
one compared to the Finite Element Method. Further-
more, we want to accelerate occurring multiplications
via a fast multipole method. A crucial issue is the
evaluation of the α̃-quasiperiodic Green’s function
(11). The use of Ewald’s method seems to be promis-
ing in this context (cp. [1]).

So far we have only studied the electromagnetic
scattering problem for smooth surfaces Σ , but want
to extend our results to Lipschitz surfaces with edges
and corners.
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