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Summary. Axial-field permanent magnet synchronous ma-
chines can be tackled by means of the so-called quasi 3D
approach, where the 3D problem is reduced to a family of
decoupled 2D problems. This approach is placed in proper
mathematical context and the modelling error is discussed.
The resulting 2D problems are cast into standard radial flux
topology.

1 Introduction

Axial-field permanent magnet synchronous machines
enjoy increasing importance. In particular, their flat
and compact shape renders them attractive for several
applications, for instance in electric vehicles, elevator
drives, or wind generators. However, when it comes
to electromagnetic modelling and simulation, there is
much less literature and tools available compared to
the standard radial flux topology. Since full transient
3D Finite Element simulations are still at the feasi-
bility limit, the so calledquasi 3D approach is often
reported in literature, both for numerical [3] and ana-
lytical [1,2,4,5] modelling.

The machine geometry is represented by a number
of cylindrical slices, compare Fig. 1(a). Each slice is
then unrolled, which yields the flat geometry depicted
in Fig. 1(b), which we will calltranslational model.
Eventually, the slice might be distorted into the seg-
ment shown in Fig. 1(c), which we will callrotational
model. The latter corresponds with the symmetry cell
in the cross section of a standard radial flux perma-
nent magnet synchronous machine, and can therefore
be computed by well-established methods.

2 Mathematical Modelling

In references [1] – [5] it is usually taken for granted
that the magnetic flux in the machine has no radial
component. It is then claimed that each translational
or rotational model can be analyzed separately, based
on a single component magnetic vector potential. The
torque of the machine is obtained by adding up the
contributions of the individual slices. We will put this
approach into proper mathematical context. For the
purpose of this paper we restrict ourselves to a mag-
netostatic model for each time step.
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(a) 3D model of a symmetry cell cut by a
cylindrical slice.

(b) Unrolling the slice
yields the 2D transla-
tional model.

(c) The 2Drotational model
is obtained by distortion.

Fig. 1. Geometry of an axial flux machine. Stator coils
are omitted. Images (a) and (b) are taken from [4, Fig. 1],
reprint with kind permission.

The magnetostatic field in the 3D model is gov-
erned by curlµ−1curlA = J, whereµ is the magnetic
permeability, in general dependent on the field,A is
the magnetic vector potential,B = curlA, andJ is the
total current density, where divJ = 0 holds.J takes
into account both the stator currents as well as the per-
manent magnets, in terms of magnetization currents.
We introduce cylindrical coordinates(r,ϕ,z), com-
pare Fig. 3, left. The vector potential can be gauged
such thatAz = 0 holds, without loss of generality. We
introduce the second order differential operators
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∆ϕz = ∂ϕ µ−1 1
r2 ∂ϕ +∂zµ−1∂z,

∆rz = ∂rµ−1 1
r

∂rr +∂zµ−1∂z.

In the chosen gauge, the double curl equation reads
[

∆ϕz −∂ϕ µ−1 1
r2 ∂rr

−∂rµ−1 1
r ∂ϕ ∆rz

][

Ar

Aϕ

]

=−

[

Jr

Jϕ

]

. (1)

This system can be interpreted as a family of prob-
lems defined on cylindersr =const. in terms of a ra-
dial potentialAr, plus a family of problems defined
on half-planesϕ =const. in terms of an azimuthal po-
tentialAϕ . Both families are coupled via off-diagonal
terms. It can be shown that if and only ifBr = 0 holds,
the field can be described in terms ofAr alone. In
practice, in axial flux machinesBr ≈ 0 holds, so the
first family dominates over the second.

This motivates working with the modelling as-
sumptionBr = 0, that is,Aϕ = 0. In this case, the first
equation of (1) reduces to∆ϕzAr = −Jr, which can
be solved on each cylinderr =const. separately. The
second equation gives rise to a residual

R = ∂rµ−1 1
r

∂ϕ Ar − Jϕ =−∂rHz − Jϕ ,

whereH = µ−1B holds. The residual gives an indi-
cation for the error introduced by the modelling as-
sumptionBr = 0. For an interpretation see Fig. 2.
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Fig. 2. The residual may be integrated over rectangleS. A
non-zero residual indicates failure to fulfill Ampère’s law in
zr-planes.

For fixed radiusr, introduce a new coordinate
ℓ= rϕ. In coordinates(ℓ,z) the equation to be solved
for Ar reads(∂ℓµ−1∂ℓ+ ∂zµ−1∂z)Ar = −Jr, the gov-
erning equation for the translational model, Fig. 1(b).

From a practical point of view, existing software
for the numerical analysis of standard radial flux ma-
chines should be employed. To that end, a transfor-
mation is required that maps linesℓ =const. to radial
half-lines, while linesz =const. shall be mapped to
concentric circles. We pick the conformal mapZ =
cexp(W /r) : W = ℓ+ iz 7→ Z = x+ iy = ρ exp(iϕ),
for fixed c,r ∈ R. The transformation is depicted in
Fig. 3.

Let Az(x,y) = Ar(ℓ,z), Jz(x,y) = Jr(ℓ,z), which
yields(∂xµ−1∂x+∂yµ−1∂y)Az =−h2Jz, with the con-
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Fig. 3. The conformal mapZ = cexp(W /r) relates the ro-
tational to the translational model, for fixedc,r ∈ R.

formal factor h = r/ρ . This is the usual magneto-
static 2D vector potential formulation, the govern-
ing equation of the rotational model, Fig. 1(c). The
Laplace operator is invariant under conformal trans-
formation, while the current density has to be scaled
by h2. The rotational model can therefore be solved
efficiently with commercially available software, for
each cylindrical slicer =const. that is contained in the
discretization. Relevant postprocessing quantities like
the torque of the machine can be computed once the
solutions for the slices are available.

An example for this approach will be given in the
full paper.
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