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Summary. Earlier reported is the potential method, which
addresses the EFIE (Electric Field Integral Equation) or
MFIE/CFIE by applying the Hodge decomposition theo-
rem to a one-form related to the physical current J. In this
approach, one solves for two unknown scalar potentials,
Φ and Ψ , which carries the same information as J. Here
we compare calculations on a 100◦ dihedral with measure-
ments. The calculations are made on meshes with different
triangle sizes, which give a simple convergence study. The
computational burden is also compared with other methods.

1 Introduction

We look at the electromagnetic scattering problem
in frequency domain. More precisely, we first ad-
dress the Electric Field Integral Equation, EFIE, [1].
In the standard formulation using the method of mo-
ments (MoM), objects which are large compared to
the wavelength will produce linear systems which
easily becomes to large to solve with direct solvers.
This problem can be tackled in various way, and one
option is to use the potential method, [2].

This method has been reported earlier, [3], [4],
demonstrating proof of concept under various circum-
stances. In this work, we will make more quantitative
evaluations, comparing measurements on a 100◦ dihe-
dral (see Fig. 1) with calculations using the potential
method. We will make a simple convergence study,
i.e, compare calculations using different meshes, and
also compare the number of unknowns with other ap-
proaches.

2 Formulation

In standard notation, with a plane wave illuminating a
PEC surface S and in an adapted ON-basis, the EFIE
(electric field integral equation) reads

∀r ∈ S :−E0e−ikzx̂ =̂ (1)

ikcµ0(I +
1
k2 ∇∇·)

∫
S

g(r,r′)J(r′)dS′.

Here J is the unknown current, g is the standard
Green’s function and =̂ means tangential equality. By
the replacement

h(r,r′) = g(r,r′)eik(z−z′), K(r′) = eikz′J(r′) (2)

and by the application of Hodge decomposition to K
(under the assumption that S is homeomorphic to a
sphere), so that, in vector calculus notation,

K = ∇SΦ + n̂×∇SΨ ,

we can express the EFIE in terms of the complex
scalar functions Φ and Ψ , which serve as potentials
for K. n̂ is normal to S. ∇S is the intrinsic (to S) gra-
dient operator.

The resulting equation is obtained by multiplying
(1) with eikz, and then use (2) to express everything in
terms of Φ and Ψ . The resulting equation is not given
here, see for instance [3]. Rather, we focus on pos-
sible advantages and results. Two major advantages
are the facts that 1) After multiplication with eikz, the
left hand side of (1) becomes an exact one-form (and
this is true whether on regards −E0x̂ as a one-form in
R3 or as a one-form on S), and 2) The replacement
K(r′) = eikz′J(r′) allows for potentially sparser sam-
pling, and hence reduced numerics. (C.f. [5].)

3 Numerical results

We have performed calculations on a 100◦ dihedral
with dimensions as in Fig. 1. The calculations have
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Fig. 1. The dihedral with its dimensions. The opening angle
of the dihedral is 100 ◦, and the dihedral is illuminated with
a plane wave with f=10 GHz from above at different angles.
The convention for horizontal and vertical polarization is
indicated in the figure.

been performed with different meshes, resulting in a
simple convergence study. The calculations are also
compared with measurements and finally the number
of unknown are compared to the number of unknown
suggested by a commercial software. In Fig. 2, calcu-
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Fig. 2. Measurements vs. calculations for different mesh
sizes, horizontal polarization (see Fig. 1). Numbers in the
legend indicate typical side length in the mesh.

lations are compared with measurement for horizon-
tal polarization (see Fig. 1). A reasonable agreement
with measurements and calculations are obtained with
a mesh size with a typical side length of 10 mm. Com-
pared with the wavelength λ , this is only ∼three tri-
angles/wavelength which is well below the rule of
thumb which is typically eight or ten triangles/wave-
length. With our mesh, we have 3406 triangles and a
total number of unknown which is 3410. Using the
commercial software FEKO, (in standard MoM set-
ting), it is for the given geometry and frequency sug-
gested a mesh which gives 127000 unknowns. Al-
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Fig. 3. Measurements vs. calculations for different mesh
sizes, vertical polarization (see Fig. 1). Numbers in the leg-
end indicate typical side length in the mesh.

though we do not claim our results to be as accurate
as with FEKO, the reduction of unknowns is substan-
tial. On the other hand, using the same meshes for cal-
culations of the scattering from vertical polarization,
the results are less satisfactory, see Fig. 3. By refin-
ing the mesh, clear improvements are noticed for the
mesh with a side length of ∼5 mm, especially around
incidence angle around 0◦, although the agreement is
worse around incidence angles around 25◦. It might
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Fig. 4. Measurements vs. calculations for mesh refinements,
vertical polarization (see Fig. 1). Numbers in the legend in-
dicate typical side length in the mesh.

be claimed that this mesh size is close to the rule of
thumb, but the mesh is only refined at the illuminated
part, with parts in the shadow having a coarser mesh.
As a result, the number of unknown N is 16872, which
is still a good factor less than 127000. As the cost
for solving the resulting linear equation scales as N3,
there is a noticeable difference.

4 Conclusions

We have applied the potential method for calculations
on a dihedral with opening angle of 100◦. It is indi-
cated that the non-convexity of the dihedral requires
different mesh sizes in different polarizations. How-
ever, in both cases, reasonable results are produced
when the number of unknowns are well below the
number of unknown given by meshes following the
rule of thumb, saying that the side lengths should be
∼ λ/10. This decreases the memory requirements as
well as the time for solving the produced linear sys-
tem, as compared to standard MoM.

References

1. C.A. Balanis Advanced engineering electromagnetics.
Wiley, 1989.

2. M. Herberthson The potential method for calculations
of scattering from metallic bodies Submitted for publi-
cation.

3. M. Herberthson EM Scattering Calculations Using Po-
tentials In J. Roos, L.R.J. Costa, editors, Scientific Com-
puting in Electrical Enginering SCEE 2008. Springer,
Berlin Heidelberg 2010.

4. M. Herberthson Application of the potential method to
the magnetic field integral equation Applied Computa-
tional Electromagnetics Society, Tammerfors, Finland,
2010, pp. 120-123.

5. O. Bruno, C. Geuzaine. A high-order, high-frequency
method for surface scattering by convex obstacles In
14th Conference on the Computation of Electromagnetic
Fields. pp. 132-133, 2003


