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Summary. An output error bound is proposed for model
order reduction of linear time invariant (LTI) systems. Ac-
cording to the error bound, the model order reduction method
based on moment-matching (moment-matching MOR) can
be implemented by selecting the expansion points adap-
tively, such that the reduced model can be obtained auto-
matically. The error bound is an estimation for the error be-
tween the transfer function of the original system and that
of the reduced model. Simulation results show the efficiency
of the error bound.

1 Introduction

Consider an LTI system

E dx
dt = Ax+Bu(t),

y(t) = Cx. (1)

If we use moment-matching MOR, usually we apply
the Laplace transform to (1), and get

sEx(s)−Ax(s) = Bu(s),
y(s) =Cx(s). (2)

From the series expansion of x(s),

x(s)=
∞

∑
i=0

[−(s0E−A)−1E]i(s0E−A)−1BU(s)(s−s0)
i,

(3)
the matrix V is computed as

range{V} = span{B̃(s0), Ã(s0)B̃(s0),
. . . , (Ã(s0))

qB̃(s0)},
(4)

where Ã(s0) = (s0E−A)−1E, B̃(s0) = (s0E−A)−1B
and q� n. The reduced model is

V T EV dz
dt = V T AV z+V T Bu(t),

y(t) = CV z. (5)

Instead of using single-point expansion s0, one can
use multi-point expansion to compute V . That is, choos-
ing multiple expansion points si, i = 0,1, . . .m, we
compute each matrix Vi corresponding to si according
to (4). Finally, V = orthogonalize{V1, . . . ,Vm}.

By using multi-point expansion, the error of the
reduced model can be kept small in a wider frequency
range. At present, how to adaptively choose the ex-
pansion points si is under investigation using several

points of view. We aim to derive an error bound for
the transfer function Ĥ(s) of the reduced model, such
that the expansion points can be adaptively chosen ac-
cording to the error bound. Since the transfer function
can be considered as the impulse response of the LTI
system in frequency domain, the error bound can be
considered as the output error bound in frequency do-
main.

The error bound is motivated by the idea in [1],
where an output error bound for the weak form of
a parametrized Partial Differential Equation (PDE) is
derived. The error bound in [1] is obtained in the func-
tion space for the weak form, where all the parame-
ters in the PDE must be real variables. Since moment-
matching MOR directly deal with the discretized sys-
tem (2) in the vector space, it is best that an error
bound is derived in the vector space rather than in the
function space. Moreover, system (2) can be seen as
a parametrized system with parameter s being a com-
plex variable.

In summary, in order to obtain the error bound for
Ĥ(s), the method in [1] is not valid due to the chal-
lenges below:

1. The error bound should be derived in the vector
space Cn.

2. The error bound should be valid for complex pa-
rameters.

Method for deriving the output error bound must be
adapted in order to meet the above two challenges.

2 Output Error Bound for an LTI System

We first present the analysis for single-input single-
output (SISO) systems, then extend the result to multiple-
input multiple-output (MIMO) systems.

We assume that the matrix G(s) = sE−A satisfies

Re(x∗G(s)x)≥ α(s)(x∗Ãx), (6)

and
Im(x∗G(s)x)≥ γ(s)(x∗Ãx), (7)

where Re(·) means the real part of x∗G(s)x, and Im(· · ·)
is the imaginary part. α(s),γ(s): C → R+ may de-
pend on the parameter s. The matrix Ã = s0E −A is
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assumed to be symmetric, positive definite, which is
satisfied by many engineering problems.

For systems with C 6= BT , we need to define a dual
system in frequency domain,

s̄E∗xdu(s)−A∗xdu(s) =−C∗,
ydu = B∗xdu(s).

(8)

Let rpr(s) = B− G(s)x̂(s) be the residual for the
primal system in (2), and rdu(s) = −C∗ − (s̄E∗ −
A∗)x̂du(s) = G∗(s)x̂du(s) be the residual for the dual
system. We will show that rpr(s) can be represented
through a vector ε̂ pr ∈ Cn, and rdu(s) can be repre-
sented through a vector ε̂du ∈ Cn.

Define a function f pr(ξ ) = ξ ∗rpr(s) : Cn→C for
the primal system. From the Riez representation the-
orem, there exists a unique vector ε̂ pr ∈ Cn, such that

f pr(ξ ) = 〈ε̂ pr,ξ 〉= ξ
∗Ãε̂

pr. (9)

We also define a function f du(ξ ) = (rdu(s))∗ξ : Cn→
C. Similarly, there exists a unique vector ε̂du ∈ Cn,
such that

f du(ξ ) = 〈ε̂du,ξ 〉= ξ
∗Ãε̂

du. (10)

Theorem 1. If the reduced model of the primal sys-
tem (2) and that of the dual system (8) is computed
by the same projection matrix V , the matrices E, A
are symmetric, and G(s) satisfies (6), and (7), then
−SR− βR ≤ Re(H(s)− Ĥ(s)) ≤ SR− βR and −SI −
βI ≤ Im(H(s)− Ĥ(s))≤ SI−βI . Here,
βR =

1
4α(s) (ε̂

pr)∗Ãε̂du+ 1
4α(s) (ε̂

du)∗Ãε̂ pr , βI =
α(s)
γ(s) βR,

SR = 1
2α(s)

√
(ε̂ pr)∗Ãε̂ pr

√
(ε̂du)∗Ãε̂du, SI =

α(s)
γ(s) SR.

From Theorem 1, we get the error bound,

|H(s)− Ĥ(s)| ≤
√

B2
R +B2

I := ∆(s), (11)

where BR =max{|SR−βR|, |SR+βR|}, BI =max{|SI−
βI |, |SI +βI |}. The error bound ∆(s) can be computed
cheaply though it is dependent on the parameter s,
because the main computational part for ∆(s) is in-
dependent of s, which can be implemented off-line.
If relative error is preferred, one should use ∆re(s) =
∆(s)/Ĥ(s). For MIMO systems, assume Hi j(s) is the
transfer function corresponding to the ith input and
jth output. For each pair of i, j, we can compute
∆i j(s). The error bound ∆(s) can be defined as ∆(s) =
max

i j
∆i j(s).

3 Adaptively Choosing Expansion Points

From the construction of the error estimator ∆(s), the
projection matrix V can be constructed by the algo-
rithm as below,

Algorithm 1 V = [];
Choose initial s∗;
ε = 1 ;
While ε ≥ εtol (εtol < 1 is the error tolerance.)

range(V )= range(V )+span{B̃(s∗), Ã(s∗)B̃, . . . , Ãq(s∗)B̃};
s∗= arg max

s∈Ξtrain
∆(s); (Ξtrain is the sample space

for s.) ;
ε = ∆(s∗);

End While

4 Simulation Results

We take two examples to support the theoretical anal-
ysis above. One example is a spiral inductor, a SISO
system; the other is an optical filter, a system with 5
outputs. Both examples are taken from the Oberwol-
fach Benchmark Collection (URL: http://simulation.uni-
freiburg.de/downloads/benchmark).

Define εmax =max
i j

max
k
|Hi j(sk)−Ĥi j(sk)|/|Ĥi j(sk)|

as the maximal true error of the current Ĥ(s) over
2000 sample points, and it is used as the error of the
current reduced model. Results of Algorithm 1 for the
spiral inductor is listed in Table 1. r is the order of
the reduced model. After 4 iterations, four expansion
points have been selected, a reduced model with accu-
racy O(10−8) is obtained. Figure 1 plots εmax vs. the
error bound ∆re(s) for the multi-output system, show-
ing ∆re(s) performs well, especially at the latter itera-
tions.

Table 1. Spiral inductor q= 5, εtol = 10−3, n= 1434, r = 24

iteration s∗/( jω) εmax ∆re(s∗)
1 1×1010 0.30 86.99
2 3.43×107 0.04 16.15
3 3.39×108 7×10−5 6×10−3

4 1.41×109 7.73×10−8 7.50×10−6

Fig. 1. Optical filter, q = 1, εtol = 10−3, n = 1668, r = 21.
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