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Summary. We propose a model order reduction (MOR)
approach for networks containing simple and complex com-
ponents modeled by linear ODE and nonlinear PDE systems
respectively. These systems are coupled through the network
topology using the Kirchhoff laws. We consider as applica-
tion MOR for electrical networks, where semiconductors
form the complex components. POD combined with discrete
empirical interpolation (DEIM) and passivity-preserving bal-
anced truncation methods for electrical circuits (PABTEC)
can be used to reduce the dimension of the whole model.

1 Introduction

We propose a simulation-based MOR approach for
the reduction of networks consisting of (many) simple
and (only few) complex components. We assume that
the simple and complex components are modeled by
systems of linear ODEs and nonlinear PDEs, respec-
tively, which are coupled through the network topol-
ogy using the Kirchhoff laws.

Fig. 1. Sketch of a coupled system with one semiconductor
forming the complex component.

We consider electrical networks where the simple
components consist of resistors, capacitors, voltage
sources, current sources, and inductors, and the com-
plex components are formed by e.g. semi-conductors,
see Fig. 1. The overall system then is represented by

a nonlinear PDAE system, see e.g. [2, 5]. We address
the following issues:

1. construction of reduced order models for the com-
plex components

2. reduction of the complete network while retain-
ing the structure of a network

2 Modeling of an electrical network

In electrical networks resistors, capacitors, and induc-
tors form the simple components which in general are
modeled by linear ODEs. Complex components are
given by e.g. semiconductors which are modeled by
PDE systems. Considering additional voltage and cur-
rent sources the overall network can be modeled by a
partial-differential algebraic equation (PDAE) which
is obtained as follows. First the network containing
only the simple components is modeled by a differen-
tial algebraic equation (DAE) which is obtained by a
modified nodal analysis (MNA), including the Ohmic
contacts ΓO of the semiconductors as network nodes,
see Fig. 1. Denoting by e the node potentials and
by jL, jV , and jS the currents of inductive, voltage
source, and semiconductor branches, the DAE reads
(see [5, 9, 12])

AC
d
dt

qC(A>C e, t)+ARg(A>R e, t)

+AL jL +AV jV +AS jS =−AI is(t), (1)
d
dt

φL( jL, t)−A>L e = 0, (2)

A>V e = vs(t). (3)

Here, the incidence matrix A = [AR,AC,AL,AV ,AS,AI ]
represents the network topology, e.g. at each non mass
node i, ai j = 1 if the branch j leaves node i and
ai j = −1 if the branch j enters node i and ai j = 0
elsewhere. In particular the matrix AS denotes the
semiconductor incidence matrix. The functions qC,
g and φL are continuously differentiable defining the
voltage-current relations of the network components.
The continuous functions vs and is are the voltage and
current sources. For details we refer to [7].

In a second step the semiconductors are modeled
by PDE systems, which are then coupled to the DAE
of the network, see e.g. [1, 2] and the references cited
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there. Further details of our approach are given in [7].
The analytical and numerical analysis of PDAE sys-
tems of the presented form is subject to current re-
search, see [2, 4, 11, 12].

3 Reduced order models for complex
components

We assume that every complex component is modeled
by a time-dependent PDE system which is amenable
to a numerical treatment with Galerkin methods. Af-
ter appropriate spatial discretization the method of
lines then yields a large, nonlinear ODE system rep-
resenting the spatially discrete complex component.
This nonlinear ODE system now represents the com-
plex component in the network. The reduction of the
complex components is based on simulation-based
MOR with proper orthogonal decomposition (POD).
In this approach time snapshots of the complex com-
ponents are extracted from snapshots of the simula-
tion of the complete network. POD for the complex
component then is performed using the extracted parts
of the snapshots. In combination with the direct em-
pirical interpolation method (DEIM) this now delivers
low dimensional, nonlinear surrogate models for the
complex components, see [6] for details. It is an im-
portant feature of this reduction technique that it de-
livers distinct reduced order models for the same com-
plex component at different locations in the network.

4 Reduction of the whole network

The overall network with simple and complex com-
ponents is represented by a nonlinear DAE system,
where the linear and nonlinear part stems from the
simple and spatially-discrete complex components re-
spectively. The reduction for the complex components
is performed as in the previous section, whereas the
linear part is approximated by a reduced order linear
model of lower dimension. In the case of an electri-
cal network the passivity preserving reduction method
(MATLAB Toolbox) PABTEC [8, 10] is used for the
reduction of the linear part of the network. Finally, the
reduced order models obtained with the approaches
sketched are recoupled appropriately. The obtained
large and sparse nonlinear DAE system as well as
the small and dense reduced-order model are inte-
grated using the DASPK software package [3] based
on a BDF method, where the nonlinear equations are
solved using Newton’s method.

The results obtained demonstrate that the recou-
pling of the PABTEC reduced order model with the
POD-MOR model for the semiconductor delivers an
overall reduced-order model for the circuit-device sys-
tem which allows significantly faster simulations (the

speedup-factor is about 20) while keeping the relative
errors below 10%.

Finally we sketch how our approach can be ap-
plied to parametrized MOR extending the techniques
of [7].
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