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Summary. An implementation of the broad band Surface
Impedance Boundary Condition (SIBC) for the high or-
der Discontinuous Galerkin (DG) method in the time do-
main is presented. In order to treat the frequency dependent
impedance function a set of auxiliary differential equations
is introduced. The effect of the DG approximation order on
the accuracy will be studied, and the results will be com-
pared with the conventional time domain Finite Element
Method.

1 Introduction
Time domain modeling is very attractive for wide
band electromagnetic problems, since it allows to com-
pute for a large range of frequencies in a single sim-
ulation. However, when the frequency band of inter-
est is wide, the dispersive nature of material param-
eters, i.e. their variation with respect to frequency,
needs to be considered. In order to model disper-
sive electromagnetic materials in time domain simu-
lations, one generally needs to evaluate one or more
convolution integrals. Clearly a direct computation of
convolution terms is too expensive for every prac-
tical computation. For this purpose, several numeri-
cally efficient approaches have been proposed. One
approach is a recursive convolution [7]. Another tech-
nique which is particularly suited for explicit time do-
main simulations is the Auxiliary Differential Equa-
tion (ADE) method. In the following, ADE is ap-
plied in the context of SIBC for arbitrary frequency
dependent electric conductivities. Finite Difference
Time Domain method (FDTD) [11] is widely used
for time domain simulations. It leads to explicit time
stepping and it is straightforward to implement. How-
ever, FDTD has a two important disadvantages: First,
the method loses substantial accuracy at curved ge-
ometrical boundaries. Second, FDTD is at most 2nd
order accurate, thus, it suffers under large numeri-
cal dispersion errors at high frequencies. Finite Ele-
ment Method (FEM) [12] is very accurate as far as
the modeling of arbitrary geometries is concerned.
However, the time domain FEM leads to implicit time
stepping [5], and is therefore numerically extremely
expensive. The Time Domain Discontinuos Galerkin
Method (DG) [3] combines the advantages of the

aforementioned methods: it is free of numerical dis-
persion, modeling of arbitrary geometries is straight-
forward, and due to the global discontinuity of the
basis functions, the resulting time stepping scheme
is explicit. However, due to the discontinuity of ba-
sis functions at cell interfaces, unphysical spurious
modes will occur. A possible cure to the problem of
spurious modes is the application of various penaliza-
tion methods as proposed, e.g., in [3], [1].
In this study, we will describe the implementation of
a wide band SIBC for higher order DG by means
of the ADE method. Furthermore, the effect of dis-
cretization order, rational approximation order for the
impedance function as well as the impact of penal-
ization on the accuracy of DG simulations with SIBC
will be investigated.

2 DG Method
In this study, we will consider the Maxwellian initial
value problem. The three-dimensional computational
domain Ω is discretized into N non-overlapping el-
ements, and on the boundary ∂Ω , the SIBC is ap-
plied. Within an element, the electric field E and the
magnetic flux density B are approximated by a linear
combination of vectorial basis functions φE and φB,
respectively. As both of the basis functions, φE and
φB, are defined cell-wise without global continuity, in
the DG method, a numerical flux approach is applied
in order to impose the neccessary continuity at the in-
terfaces between mesh cells in the weak sense. A de-
tailed despription of the method as well as of the ap-
proximation functions, φE and φB, used in the present
implementation is given in [1].

3 The SIBC Approach
Modeling of media with large but finite electrical
conductivities typically leads to very dense meshes
and thus to small time steps as required for stabil-
ity in explicit time domain simulations. Therefore,
it is desirable to exclude the lossy media from the
computational domain. This can be done by intro-
ducing at the boundary surface of the conductive do-
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main impedance-like conditions, which provide a re-
lationship between the tangential electric field to the
tangential magnetic field components. The classical
SIBC was introduced by Leontovich (cf. [10]). It as-
sumes the lossy surface to be planar and ignores the
tangential variation of the field quantities. The error
of the Leontovich SIBC is order of O(δ 2), where δ is
skin depth, which makes it especially suitable for high
frequencies. [4]. The second order SIBC [6] takes
into account also the curvature of the surface. It is,
furthermore, possible to construct higher order, thus,
more accurate SIBC by taking into account, in addi-
tion, the tangential variation of the field components
along the lossy surface [8]. When the thickness of the
conductive medium is of the order of skin depth, the
electromagnetic fields on the different sides of lossy
medium interact with each other. Also this type of
problems can be modeled by means of SIBC, using
e.g. Sarto’s [9] approach.

4 Approximation of Impedance Function
In order to transform the dispersive impedance func-
tion into the time domain, it is first approximated in
the frequency domain as a series of rational func-
tions [2]. The rational approximation for the tangen-
tial magnetic field can be written as:

Y (ω)Et ≈ Y0Et +
P

∑
i=1

YiEt

jω −ωi
, (1)

where Et is tangential electric field on the surface, P is
the order of the rational approximation, Y0 free space
admittance, Yi and ωi are approximation parameters.
Let us rewrite the rational approximation given in (1)
as Y (ω)Et ≈ Y0 +∑

P
i=1 Yi. The the SIBC condition

transforms in the time domain to

Y0 = Y0Et and
d
dt

Yi −ωiYi = YiEt . (2)

Equation (2) represent the auxiliary differential equa-
tions of the ADE method which need to be solved
for in the time domain together with the full set of
Maxwell’s equations.

5 System of Equations
The system of discrete equations to be solved in the
time domain can be written as:

CEe+ d
dt Mµ h = 0

CHh− d
dt Mε e = CY ∑

P
i=0 Yi

Y0 = Y0et
d
dt Yi −ωiYi = Yie for i = 1...P,

(3)

where CE and CB are curl-matrices obtained by high
order DG discretization, CY is so called ”admittance
flux” matrix, and Mµ and Mε are block-diagonal

mass matrices. In the full paper, the numerical accu-
racy and efficiency of this approach with respect to
discretization order for different rational function ap-
proximations (1) will be discussed.

6 Summary
Dispersive SIBC will be implemented for time do-
main DG method in order to model a wide frequency
band at a single simulation. The frequency dependent
conductivity of lossy surfaces is considered in time
domain by auxiliary differential equations. We will
study the accuracy of the solution for different DG
discretization orders and impedance function approx-
imations, and compare our results with the standard
SIBC-FDTD method.
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