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Summary. Resolving thin conducting sheets for shielding
or even skin layers inside by the mesh of numerical meth-
ods like the finite element method (FEM) can be avoided
by using impedance transmission conditions (ITCs). Those
ITCs shall provide an accurate approximation for small
sheet thicknesses d, where the accuracy is best possible in-
dependent of the conductivity or the frequency being small
or large – this we will call robustness. We investigate the ac-
curacy and robustness of popular [1, 2] and recently devel-
oped ITCs [4], and propose robust ITCs which are accurate
up to O(d2).

1 Introduction

Thin conducting sheets for the protection of electronic
devices exhibit large ratios of characteristic lengths
which require a small mesh size when using finite dif-
ference or finite element schemes. Besides this issue
of computational cost due to the small geometry de-
tail, many commercial mesh generators get difficul-
ties with anisotropic geometrical features.

The shielding behaviour can be modelled alterna-
tively by replacing the thin sheet by an interface on
which impedance transmission conditions are set.

We consider the time-harmonic eddy current model
(convention exp(−iωt), ω > 0) in two dimensions

curl2D e(x) = iωµ0h(x), (1)
curl2D h(x) = σe(x)+ j0(x) (2)

where e and h are the out-of-plane electric and in-
plane magnetic fields, σ is the conductivity of the
thin sheet of thickness d and zero elsewhere, and j0
is the out-of-plane imposed current which is outside
the conductor. We have used the 2D rotation opera-
tors curl2D = (∂y,−∂x)

> and curl2D = (−∂y,∂x). The
skin depth inside the conductor is δ =

√
2/ωµ0σ .
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Fig. 1. Impedance transmission conditions are set on the
mid-line Γ of the sheet and shall approximate the exact field
outside the area the sheet was originally located.

2 Thin sheet and limit conditions

2.1 Thin sheet transmission conditions

With β = iωµ0 and γ =
√
−iωµ0σ the impedance

transmission conditions by Krähenbühl and Muller [1]
and Mayergoyz and Bedrosian [2] are given by

e+KM− e−KM = β

γ
tanh( γd

2 )(h+
KM ·n+h−KM ·n),

h+
KM ·n

⊥−h−KM ·n
⊥ = γ

β
tanh( γd

2 )(e+KM + e−KM)

(3)

which are set on the mid-line Γ of the thin sheet. Here,
the subscript KM denotes the approximative electric
and magnetic field, the superscript ± denotes the val-
ues on the two sides of the sheet, and n = (n1,n2)

>

and n⊥ = (n2,−n1)
> are the normalised normal and

tangential vectors on Γ like shown in Fig. 1.

2.2 The limit of vanishing thickness

Impedance transmission conditions are developed for
thin sheets and their accuracy shall be larger the thin-
ner the sheet. We observe three different limits for
vanishing sheet thickness (d→ 0):

1. The conductivity σ is remained or is increased
less than 1/d. Then, we have twofold continuity

e+0 − e−0 = 0,

h+
0 ·n⊥ − h−0 ·n⊥ = 0.

(4)

The limit corresponds to the low-frequency eddy
current limit δ → ∞.

2. The conductivity σ increases like 1/d, where we
get the non-trivial limit conditions [3]

e+1 − e−1 = 0,

h+
1 ·n⊥ − h−1 ·n⊥ = σd

2 (e+1 + e−1 ).
(5)

3. The conductivity σ increases more than 1/d, e. g.,
like 1/d2. Then, the electric field on both sides
get zero in the limit d→ 0,

e+2 = e−2 = 0, (6)

equivalently to the high-frequency limit δ → 0.

Here, the respective subscripts 0, 1 and 2 correspond
to the scaling σ ∼ 1/dα with α = 0,1,2.
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Fig. 2. The modelling error when using (a) the low-frequency limit, (b) the high-frequency limit, (c) the non-trivial limit, and
(d) the thin sheet conditions (3) to approximate the shielding of conducting sheets of different thicknesses d and different
frequencies or skin depth δ . The shown error is the one of the magnetic field outside the thin sheet.

2.3 Discussion

We investigated the thin sheet conditions and the limit
conditions with high-order finite elements for a straight
thin sheet in a rectangular box (with periodic bound-
ary conditions) and two circular live wires with op-
posite current direction. The original thin sheet con-
ditions (3) turn out to be robust with respect to the
skin depth or frequency, see Fig. 2(d), which is obvi-
ous as they transform into (4) for low frequencies and
into (6) for high frequencies, cf. [1].

The low-frequency limit conditions (4) achieve
only some accuracy if the sheet thickness is more than
one or two orders smaller than the skin depth. The
high-frequency limit conditions (6) entail some accu-
racy if the skin depth is at least at the order of the
sheet thickness.

The non-trivial limit conditions (5) are again ro-
bust and their accuracy is comparable to the one of the
original thin sheet conditions for large skin depths /
thickness ratios and much better if the skin depth gets
relatively small, see Fig. 2(c). This obvervation is re-
markable as the expression of (5) is much simpler
than the one of (3).

3 High order transmission conditions

In order to improve the accuracy we have studied an
asymptotic expansion for d→ 0 where – motivated by
the non-trivial limit conditions – the conductivity is
once scaled like 1/d (case α = 1) and – motivated by
asymptotically constant skin depth – the conductivity
is once scaled like 1/d2 (case α = 2).

3.1 Conductivity scaled like 1/d

The first order ITCs related to α = 1 are given by [4]

e+1,1 − e−1,1 = 0,

h+
1,1 ·n⊥ − h−1,1 ·n⊥ = σd

2 (1+ 1
6 iωµ0σd2)(e+1,1 + e−1,1).

The second and third ITCs involve curvature terms
and second order tangential derivatives, see [4].

3.2 Conductivity scaled like 1/d2

The first order ITCs related to α = 2 are given by

e+2,1 − e−2,1 = βd
2

(
1− tanh(

γd
2 )

γd
2

)
(h+

2,1 ·n+h−2,1 ·n),

h+
2,1 ·n⊥ − h−2,1 ·n⊥ = γ

β

sinh(
γd
2 )

cosh(
γd
2 )− γd

2 sinh(
γd
2 )

(e+2,1 + e−2,1).

Additional terms will be present for curved sheets.

3.3 Discussion

Both proposed ITCs are robust and get improved ac-
curacy in comparison to the non-trivial limit and the
original thin sheet conditions. The accuracy for both
ITCs is asymptotically like O(d2). Especially, the
α = 2-ITCs achieve accurate results even for larger
sheet thicknesses. Since their expression has the same
form as the original thin sheet conditions (3) they are
preferable – for low and for high frequencies.
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(a) Order 1 α = 1.
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Fig. 3. Error of the impedance models of order 1 derived by
asymptotic expansion for the scaling σ ∼ 1/dα , α = 0,1.
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