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Summary. When formulating impedance boundary con-
ditions in time domain, the Dirichlet-to-Neumann map of
the interior of a good conductor involves convolutions. A.
Schädle, M. López-Fernández and C. Lubich have devel-
oped a fast and memory efficient algorithm based on Runge-
Kutta methods for computing convolutions when only the
Laplace transform of the kernel is known. We investigate
the coupling of FCQ with FEM for solving parabolic PDE
with impedance boundary conditions involving convolu-
tions.

1 Introduction

Alternating electromagnetic fields decay exponentially
when penetrating a good conductor (skin effect). There-
fore, a reasonable approximation of the electromag-
netic Dirichlet-to-Neumann map of the interior of a
good conductor is provided by the impedance bound-
ary conditions(
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γDL(E)(s), (1)

where L(E)(s) denotes the temporal Laplace trans-
form of the electric field, s is a complex variable and
γD is the tangential Dirichlet trace operator. The con-
ductivity σ and permeability µ are known material
parameters.

The relationship (1) is valid in the Laplace domain
only. When formulating impedance boundary condi-
tions in the time domain, we encounter temporal con-
volutions of the form

curl E(x, t)×n =
∫ t

t0
k(µ,σ ,τ− t)γDE(x,τ)dτ. (2)

2 Fast Convolution Quadrature

C. Lubich and A. Ostermann first introduced the Runge-
Kutta convolution quadrature in [1]. Their algorithm
requires only the knowledge of the Laplace transform
K of the possibly weakly singular kernel and experi-
ences excellent stability properties and high order of
convergence.

Subsequently in [2] A. Schädle, M. López-Fernández
and C. Lubich rearranged the computations and com-
bined the convolution quadrature with the exponen-
tially convergent approximation of the convolution

weights along hyperbolae. They obtained a fast and
memory efficient algorithm which virtually shares the
convergence and stability properties of the convolu-
tion quadrature. Table 1 compares the complexity of
a naive implementation of the convolution quadrature
with the reduced complexity of the FCQ.

Table 1. Complexity of Convolution Quadrature and FCQ,
n indicates the number of timesteps.

CQ FCQ

multiplications O(n2) O(nlogn)
evaluations of K O(n) O(logn)
active memory O(n) O(logn)

3 FEM-FCQ Coupling

We have investigated the coupling of the FEM and
the FCQ for solving the exterior eddy current prob-
lem. The algorithm benefits from the computational
efficiency of the FCQ and seems to inherit the good
convergence and stability properties which both the
FEM and the FCQ supply.

For example we have combined the linear Lagrangian
FEM on a triangular mesh with nodal basis functions
with the RadauIIA based FCQ for solving the eddy
current problem, after assuming a translation symme-
try of the model and the TE-mode. We have observed
that both the maximal order of convergence in space
of FEM an the maximal order of convergence in time
of FCQ have been achieved.
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