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Summary. This paper discusses an efficient mixed mode
simulation method for induction heating problems. For time-
harmonic inputs the electromagnetic part can be considered
in the frequency domain. This avoids the inefficient time
integration of high frequency signals. By leaving the heat
problem in time domain this approach leads to a frequency-
transient simulation with low computational costs. The cou-
pling is established by an average power transfer model.

1 Introduction

Inductive power transfer problems deal with electro-
magnetic fields that transport large amounts of energy.
Even small power losses can result in considerable
heating up [3, 5, 6]. The skin effect causes most heat
generation at material boundaries. Hence the temper-
ature considerably influences the material parameters,
e.g. the electric conductivity, and thus the electromag-
netic fields. This underlines the need for a mutual cou-
pling of the heat and electromagnetic field models.

A transient simulation of the coupled problem
often suffers from relative small time steps due to
high frequencies in the electromagnetic part. How-
ever, heating up is a comparatively slow effect. There-
fore simulations of large time intervals are necessary.
The small time steps in combination with long time
intervals induce high computational cost or make a
simulation even infeasible (multirate behaviour).

It is beneficial to reduce the computational effort
for solving the electromagnetic problem. In this paper
we discuss an adapted model that allows for a mixed
formulation: frequency domain analysis of the EM
problem and time domain for the heat problem, [2].
This approach is similarly implemented in COMSOL
Multiphysics, [4]. We focus on numerical analysis in
the framework of dynamic iteration, e.g. [1].

An model example from industry is used for nu-
meric results. KOSTAL describes with that the power
transfer by induction for an inductive charging sta-
tion. It will be used to charge batteries of electric cars.

2 Modelling

Electromagnetic fields are mathematically described
by a system of time-dependent partial-differential equa-
tions on a domain Ω . It reads in curl-curl formulation:
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Fig. 1. Time windows τi, time steps due to dynamics (red
and blue arrows) and coupling scheme (black arrows).
Small time steps (red) are avoided in frequency domain.
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+∇× (ν ∇×A) = Je, (1)

where the reluctivity ν and the permittivity ε depend
only on space r∈Ω , the electrical conductivity σ also
on temperature T , the external current density Je is a
given sinusoidal source and the magnetic vector po-
tential A(t) is unknown on t ∈ [t0, te]. For brevity the
space dependency r is always neglected. On the other
hand we have the heat equation

ρ c
∂T
∂ t

= ∇ · (k∇T )+Q, (2)

where the temperature T is an unknown function and
the mass density ρ , the heat capacity c and the heat
conductivity k depends on space and temperature.
The term Q is a source term. It is given by the power
loss of the electromagnetic field and couples (1) and
(2). If we neglect hysteresis losses, Q is described by

Q(A,T ) = σ(T )
∂A
∂ t
· ∂A

∂ t
− ∂A

∂ t
·Je . (3)

We equip (1)-(3) with boundary and initial condi-
tions at t0 and discretise it. However (1) requires very
small time steps for the fast varying signal Je. This
problem is addressed in the next section.

3 Averaging Power and Temperature

We split the time interval of interest [t0, te] in time
windows [τi,τi+1] according to the time scale of the
heat transfer, see Fig. 1. Since heat transfer is a rather
slow process, it is sufficient to consider only the aver-
aged power per time window that is generated:

Q̄i =
1

τi+1− τi

∫
τi+1

τi

Q(A(t),T (t)) dt (4)
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Fig. 2. Results with temperature dependent σ and const. σ

and similarly the temperature is averaged:

T̄i =
1

τi+1− τi

∫
τi+1

τi

T (t)dt. (5)

It follows for time-harmonic input signals Je

Q̄i = σ(T̄i)
ω2

2

∥∥∥Âc

∥∥∥2

c
+

ω

2
Im(Âc) · Ĵe, (6)

where ω is the angular frequency and Ĵe the amplitude
of Je and Âc is the complex fourier coefficient of the
solution for A = Âc e jωt of (1) with Je = Ĵe e j ω t .

We derive a simplified system consisting of a (1)
in frequency domain and a (2) in time domain:

( j ω σ(T̄i)−ω
2

ε)Âc +∇× (ν ∇× Âc) = Ĵe (7)

ρ c
∂T
∂ t
−∇ · (k∇T ) = Q̄i, (8)

where Q̄i is defined in (6) and T̄i in (5). Equation (7)
is equivalent to an average power transfer model of
(1). However, in frequency domain only a linear sys-
tem has to be solved instead of many time steps. This
approach exploits efficiently different time scales.

4 Co-simulation

We solve the system (6)-(8) iteratively, [1], In the fol-
lowing the subscript index i belongs to time step ti and
the superscript index (l) denotes the iteration step l.

( jω σ(T̄ (l)
i+1)−ω

2
ε)Â(l+1)

i+1 +∇× (ν ∇× Â(l+1)
i+1 ) = Ĵe

Q̄(l+1)
i+1 = σ(T̄ (l+1)

i )
ω2

2

∥∥∥Â(l+1)
i+1

∥∥∥2

c
+

ω

2
Im(Â(l+1)

i+1 ) · Ĵe

T̄ (l+1)
i+1 − hi

ρ c
∇ · (k∇T̄ (l+1)

i+1 ) = T̄i +
hi

ρ c
Q̄(l+1)

i+1

The co-simulation can be organized as shown in Fig.
3 for the special case where time step and time win-
dow sizes agree, i.e., hi = τi+1− τi.

In the full paper this algorithm is numerically
analysed and convergence of the inner loop is shown.
This converges to the average power and temperature
model from Sec. 3. In a second step it will be shown,
that this model converges to the original model from
Sec. 2 when the time steps turn to zero. In addition
the computational sequence of the subsystem will be
discussed. The results are verified by a 2D model of
the industry example, see Fig. 2.
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Fig. 3. Co-Simulation
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