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Summary. We propose explicit local time-stepping (LTS)
schemes of high accuracy based either on classical or low-
storage Runge-Kutta schemes for time dependent Maxwell’s
equations. By using smaller time steps precisely where
smaller elements in the mesh are located, these methods
overcome the bottleneck caused by local mesh refinement
in explicit time integrators.

1 FE Discretizations of Maxwell’s
Equations

The evolution of a time-dependent electromagnetic
field E(x, t), H(x, t) propagating through a linear iso-
tropic medium is governed by Maxwell’s equations:

εEt = ∇×H−σE+ j, (1)
µHt = ∇×E. (2)

Here the coefficients µ , ε and σ denote the relative
magnetic permeability, the relative electric permittiv-
ity and the conductivity of the medium, respectively.
The source term j corresponds to the applied current
density.

We discretize (1)-(2) in space by using standard
edge finite elements (FE) with mass lumping [6] or a
discontinuous Galerkin (DG) FE discretization [4, 5],
while leaving time continuous. Either discretization
leads to a system of ordinary differential equations
with an essentially diagonal mass matrix. Thus, when
combined with explicit time integration, the resulting
fully discrete scheme of (1)-(2) will be truly explicit.

2 Runge-Kutta based LTS

Locally refined meshes impose severe stability con-
straints on explicit time-stepping methods for the nu-
merical solution of (1)-(2). Local time-stepping meth-
ods overcome that bottleneck by using smaller time-
steps precisely where the smallest elements in the
mesh are located. In [1, 2], explicit second-order LTS
integrators for transient wave motion were developed,
which are based on the standard leap-frog scheme.
In the absence of damping, i.e. σ = 0, these time-
stepping schemes, when combined with the modi-
fied equation approach, yield methods of arbitrarily

high (even) order. By blending the leap-frog and the
Crank-Nicolson methods, a second-order LTS scheme
was also derived there for (damped) electromagnetic
waves in conducting media, i.e. σ > 0, yet this ap-
proach cannot be readily extended beyond order two.
To achieve arbitrarily high accuracy in the presence
of damping, while remaining fully explicit, explicit
LTS methods for the scalar damped wave equation
based on Adams-Bashforth multi-step schemes were
derived in [3].

Here we propose explicit LTS methods of high
accuracy based either on explicit classical or low-
storage Runge-Kutta (RK) schemes. In contrast to
Adams-Bashforth methods, RK methods are one-step
methods; hence, they do not require a starting proce-
dure and easily accommodate adaptive time-step se-
lection. Although, RK methods do require several fur-
ther evaluations per time-step, that additional work is
compensated by a less stringent CFL stability restric-
tion.

Clearly, the idea of using different time-steps for
different components in the context of ordinary differ-
ential equations is not new [7]. However, RK methods
achieve higher accuracy not by extrapolating farther
from the (known) past but instead by including further
intermediate stages from the current time-step. Thus,
for the numerical solution of partial differential equa-
tions, the derivation of high-order local time-stepping
methods that are based on RK schemes, is generally
more difficult.

3 Numerical Experiments

To illustrate the versatility of our approach, we con-
sider the scalar damped wave equation

utt +σut −∇ · (c2
∇u) = f in Ω × (0,T ) , (3)

in a rectangular domain of size [0,2]× [0,1] with
two rectangular barriers inside forming a narrow gap.
Here f (x, t) is a (known) source term, whereas the
damping coefficient σ(x) ≥ 0 and the speed of prop-
agation c(x) > 0 are piecewise smooth. We use con-
tinuous P2 elements on a triangular mesh, which is
highly refined in the vicinity of the gap, as shown in
Fig. 1. For the time discretization, we choose an LTS
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Fig. 1. The initial triangular mesh (left); zoom on the “fine”
mesh indicated by the darker (green) triangles (right).

Fig. 2. The solution at times t =0.6 and 0.7.

method based on an explicit third-order low-storage
Runge-Kutta scheme. Since the typical mesh size in-
side the refined region is about p = 7 times smaller
than that in the surrounding coarser region, we take
p local time steps of size ∆τ = ∆ t/p for every time
step ∆ t. Thus, the numerical method is third-order ac-
curate both in space and time with respect to the L2-
norm. In Fig. 2, a Gaussian pulse initiates two plane
waves, which propagate horizontally in opposite di-
rections. As the right-moving wave impinges upon
the obstacle, a small fraction of the wave penetrates
the gap and generates multiple circular waves on both
sides of the obstacle, which further interact with the
wave field.
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