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Summary. Computational models of resonant electromag-
netic structures which are bounded by perfectly matched
layers have an eigenvalue spectrum which is spoilt by eigen-
modes which reside within these layers. In the context of the
finite integration technique we apply a computational inex-
pensive sensitivity analysis in order to identify those unde-
sired eigenmodes.

1 Motivation

The computation of electrodynamic eigenmodes of
radiating structures is a challenging task, since the
transition to free-space at the boundaries has to be
modeled. An established technique to model that tran-
sition is the use of a perfectly matched layer (PML)
[5]. The PML causes the eigenvalue problem of Max-
well’s equations to become complex for structures of
any material. Moreover, the PML consists of artifi-
cial materials whose parameters can be large in mag-
nitude, which causes some eigenmodes to be trapped
within the PML. In this contribution we show an com-
putationally efficient analysis which is based on the
eigenvalues’ sensitivity that is able to decide whether
a specific eigenmode is bound to the PML or the
structure. The approach follows an adjoint technique
which is known since quite some time [2, 3]. Recent
advances considering the sensitivity analysis of wave-
guide models has been shown in [1].

2 Computational Approach

The discrete Maxwell’s eigenvalue problem is set up
in the framework of the finite integration technique
(FIT) [4]. The Maxwell grid equations can be written
down in frequency domain, neglecting currents and
charges, for dispersive materials as

C_e =−sMµ(s)
_
h, CT _

h = sMε(s)
_e, (1)

where C∈RN×N is the topological curl-operator con-
sisting of entries with {−1;0;1} and s = iω = 2πi f
is the frequency. The constitutive relations read

__d = Mε(s)
_e and

__b = Mµ(s)
_
h. (2)

An absorbing boundary condition based on complex
metric stretching perfectly matched layer (PML) [5]

can be introduced in FIT in a straight-forward man-
ner. Since the PML is only in the continuous case
perfectly matched a remaining reflection error is in-
troduced that can be controlled by the number and the
step width of the absorbing layers. The introduction
of dielectric and magnetic losses in the PML cause
the diagonal material matrices Mµ and Mε to be-
come complex. The actual frequency dependency of
the components of the material matrices on the PML
parameters reads exemplarily for the permeability

µ
−1(s) =

1+ σn
s

1+ σt1
s + σt2

s2

µ
−1
0 . (3)

In frequency domain we solve the curl-curl eigen-
mode equation for complex resonance frequencies
−s2 and grid-voltages _e , which are derived from (1)
as

A(s)_e =−s2_e, A(s) = Mε−1(s)CT Mµ−1(s)C.
(4)

At this point the eigenvalue problem (4) has a poly-
nomial-type nonlinearity. Since the PML is designed
to operate quite well over a certain frequency range,
the frequency dependent material matrices are eval-
uated at the estimation frequency sest , in order to
linearize the eigenvalue problem (4). Yet, the sys-
tem matrix A(s) remains complex with eigenvalues
−s2. The solution can be computationally expensive,
but yields the modal field distributions as well as
their resonance frequency and quality factors Q =
ℑ{s}/2ℜ{s}. Moreover, the spectrum is spoilt by un-
desired modes, which are trapped within the PML and
occur at similar frequencies like the desired modes.

3 Eigenvalue Sensitivity Analysis

We start with a complex eigenvalue problem of the
type Ax = λx and its derivative

(A′−λ
′I)x+(A−λ I)x′ = 0. (5)

The primed quantities denote derivations with respect
to the design parameter p e.g. A′ := ∂A/∂ p. Follow-
ing the standard perturbation theory [2] the multipli-
cation from the left with the corresponding left eigen-
vector yH and substitution of yHA = λyH (the defini-
tion of the left eigenvalue problem) finally yields the
derivative of the eigenvalue



2

λ
′ =

yHA′x
yHx

, (6)

which could be further simplified, if the left and right
eigenvectors were orthonormalized. The left eigen-
vectors yH of a matrix eigenvalue problem yHA =
λyH can be computed as the right eigenvectors of the
matrix’ adjoint AHy = λ ∗y, where ∗ denotes the com-
plex conjugate.

4 Application to an Example in the FIT

The FIT system matrix A from (4) can be made com-
plex-symmetric by a similarity transform with M

ε−1/2 .
The adjoint of the complex-symmetrized matrix satis-
fies

AH
sym = A∗sym, (7)

which is simply the complex-conjugate matrix. Eigen-
vectors of AH are identified as the dielectric grid
fluxes

__d
∗
. However, instead of solving the eigenvalue

problem itself we can get the dielectric grid fluxes
simply from the matrix-vector multiplication given in
the material relation (2).

Figure 1a shows the structure for our numerical
tests, which consists of a small dielectric slab having
εr = 5 in a parallel-plate waveguide. An undesired as
well as an desired eigenmode are included in Fig. 1b
and 1c respectively. The lateral boundaries are mod-
eled by a PML.

a) b) c)

Fig. 1. a) Model of dielectric square having εr = 5. b) Un-
desired eigenmode at 13.76 GHz. c) Structure eigenmode at
12.82 GHz.

In Fig. 2 the loci of eigenvalues are plotted for
different values of the linearization parameter sest . It
turns out that eigenvalues which are weakly depen-
dent on sest are those of structure eigenmodes (◦). For
sensitivity analysis the frequency dependent system
matrix is derived by sest .

Figure 3 shows the magnitude |λ ′| obtained by
(6). Again small values belong to eigenmodes whose
field distribution (cf. Fig. 1c) is primarily concen-
trated within the structure (◦). Eigenmodes whose
field distribution is contained within the PML show
a magnitude of |λ ′| which is larger than zero. The ab-
solute limits for decisions on |λ ′| are the topic for fur-
ther investigations.
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Fig. 2. Loci of eigenvalues λ for linearization parameters
sest ∈ [2πi· 8 GHz,2πi·16 GHz]. Neglectable deviations of
the data sets indicate eigenfrequencies with a field distribu-
tion within structure and low PML dependency (◦).
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Fig. 3. Magnitude of the derivative |λ ′| over ℜ{λ}, lin-
earized at sest = 2πi·12.83 GHz. Small values indicate
eigenmodes that are bound to the dielectric substructure (◦).

5 Conclusion

We present a methodology which is able to decide
which eigenmode belongs originally to the computa-
tional model and which is introduced by the perfectly
matched layers absorbing boundary condition.
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