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Summary. In this contribution we investigate the perfor-
mance of a parallel ILU preconditioner for the iterative so-
lution of a magnetostatic model problem. Using the mag-
netic vector potential A and conformal FEM-discretization
results in a singular system matrix. We construct the pre-
conditioner for the CG-solver by applying a shift for regu-
larization, see [2, 3, 6]. The resulting regular matrix is then
decomposed by the ILUPACK1 library and is used for pre-
conditioning. ILUPACK is a MPI-parallelized implementa-
tion of the inverse-based multilevel block ILU, see [4].

1 Introduction

The magnetostatic problem under consideration writes

curl
1
µ

curlA = j . (1)

Herein A is the magnetic vector potential, j is a pre-
scribed divergence free current density, and µ is the
possibly nonlinear magnetic permeability. Using con-
formal finite elements for the discretization leads to
the following problem that is to be solved in weak
formulation

(
1
µ

curlA,curlA′) = (j,A′) . (2)

The solution of magnetostatic problems in presence
of nonlinear magnetic material can be time consum-
ing. The change in the material parameters during the
nonlinear iteration results in a change in the system
matrix M := ( 1

µ
curlA,curlA′). Magnetostatic prob-

lems are typically solved by preconditioned iterative
solvers [2, 5, 7]. Jumps in the magnetic permeability
deteriorate the condition of the problem, and precon-
ditioning is mandatory. The preconditioner P−1 has to
be updated many times if M changes too much during
the outer nonlinear iteration, see Fig. 1. Therefore it
is essential to provide a fast way of updating the pre-
conditioner.

The system matrix M is singular. In this paper we
regularize M by using a small shift β ∈R. This yields
the preconditioner

P := (
1
µ

curlA,curlA′)+(
β

µ
A,A′) . (3)

1 http://ilupack.tu-bs.de

Fig. 1. Algorithm to solve a nonlinear magnetostatic prob-
lem.

The decomposition of P is then accomplished by us-
ing the mentioned MPI-parallelized ILUPACK library.
In the next Section 2 we introduce the theoretical
background of ILUPACK. In the numerical experi-
ments of the final Section 3 we show the parallel scal-
ing performance of the ILU-preconditioner as well as
the preconditioning behavior itself.

2 Inverse-Based Multilevel Block ILU

For preconditioning the conjugate gradient method,
ILUPACK computes an incomplete Cholesky-like fac-
torization P ≈ LDLT , where L is unit lower triangu-
lar and entries of small modulus are dropped. ILU-
PACK’s hallmark is to keep ‖L−1‖ below a given
bound κ during the factorization [4]. To do so, at
each step l of the decomposition we either pursue the
factorization whenever ‖L−1‖ 6 κ , or we postpone
a step, otherwise (cf. Figure 2). The block of post-
poned updates SC (known as Schur complement) be-
comes the starting matrix of the next level. Using this
inverse-based strategy and a moderate value of κ (e.g.
κ = 5) it can be shown that small eigenvalues of P are
revealed by SC. Thus SC serves as some kind of coarse
grid system.

The parallelization of ILUPACK mainly consists
of a nested dissection partitioning of the graph of P.
This yields a hierarchy of subsystems which can be
represented by an incomplete binary task tree. Start-
ing with the leaves, the multilevel ILU is applied to
all subsystems concurrently until these join the same
parent task. Separators are factorized at last [1].
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Fig. 2. ILUPACK pivoting strategy.

3 Numerical Experiments

Numerical experiments were made on the model prob-
lem of Fig. 3. It consists of a copper coil, and a
non-conductive high permeable core. The tests were

Fig. 3. Results of the magnetostatic field computations. The
left picture shows the setting and the relative magnetic per-
meability, the central picture shows the exciting current den-
sity (1kA total current), and the right picture shows the re-
sulting magnetic field H = 1

µr ·µ0
· curlA.

carried out on a 12-core INTEL-Westmere worksta-
tion with 3.06GHz and activated hyper-threading. We
chose β = 0.01 for the regularization parameter in (3).
In our experiments we are testing the parallel perfor-
mance up to 8 cores. The results of the CPU times of
the solver are shown in Fig. 4. Therein, the key val-
ues of two different meshes for 1.2E+6 unknowns and
for 1.02E+7 unknowns are drawn. One can observe a
perfectly parallel scaling for the pure ILU factoriza-
tion part. A slightly worse behavior can be seen for
the preconditioned conjugate gradient (PCG) solver.
Moreover, the PCG needs more time than the factor-
ization for greater problem dimensions. This is due to
the fact, that the number of iterations is also increas-
ing with the number of unknowns, see Fig. 5.

Finally, it can be concluded that ILUPACK seems
to be a very promising library for the fast parallel so-
lution of magnetostatic problems. This needs to be
confirmed for more complex geometries.
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