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Summary. A novel Discontinuous Galerkin Finite Element
Method for space-time electrodynamic problems is pre-
sented. The method employs space—time Trefftz basis func-
tions that satisfy the underlying partial differential equa-
tions exactly in an element-wise fashion. A major advan-
tage of Trefftz approximations is their high accuracy that
in many cases leads to spectral convergence. First computa-
tional results are presented.

1 Introduction

Discontinuous Galerkin Finite Element Methods (DG-
FEM) [1H4] are a major class of tools to numeri-
cally simulate complicated Electro-Magnetic (EM)
systems. Here we present a highly accurate type of
DG-FEM. A distinguishing new feature of the method
is the use of Trefftz basis functions instead of the
traditional generic polynomials. By definition space-
time Trefftz basis functions satisfy Maxwell’s equa-
tions exactly in an element-wise fashion. The method
is, hence, a Discontinuous Galerkin Trefftz Finite El-
ement Method (DGT-FEM) [5]]

2 Development of the Method

This section consists of three parts. First, we state
Maxwell’s equations in (1+1)D. Second, we derive a
weak formulation of Maxwell’s equations and finally
introduce Trefftz-type basis functions.

2.1 Maxwell’s Equations in 1D

For a wave traveling in the x-direction, with electric
and magnetic fields polarized as £ := Ey and H := H,,
we can write Maxwell‘s equations in the one dimen-
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Here u is the magnetic permeability and € is the di-
electric permittivity. We assume the space-time do-
main of interest £ to be free of any sources. With the
abbreviations
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we cast Maxwell’s equations into the form
VIne-F=0 and V'-n,-F=0. (2

Here the EM field vector F reads

e (5)

2.2 Weak DG-Form of Maxwell’s Equations

We obtain the weak form of (2) by multiplying
with a vectorial test function
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and integrating over the domain of interest. This leads
to the following form
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After integration by parts and a subsequent applica-
tion of the Gauss Theorem the weak form of Maxwell’s
equations reads
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where n is the unit normal on the space-time domain
boundary I' := dQ.

2.3 The Trefftz Basis

Standard FEM uses generic polynomials as basis func-
tions. However, problem—specific basis functions, es-
pecially Trefftz-type functions [[6] can provide much
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better accuracy . Here, we use vectorial basis func-
tions whose components are transport polynomials
(see Fig.[T) of the form

ubort = :i:(x:l:vt)p
u’t = ; “)
uthpd = Z(x:l: vt)p
where Z = \/g is the intrinsic impedance and v the

speed of light in the medium. The basis function u”*

corresponds to a wave traveling leftward whereas u?”~
corresponds to a wave traveling rightward; p is the or-
der of the basis function. The field vector is a linear
combination of the Trefftz waves

P
F=Y fP(u”* +u”"), 5)
p=0
where P is the maximum order of approximation and
fP is the field coefficient of order p. Therefore the
total number of coefficients f7 is 2(1 + P), each cor-
responding to a vectorial basis function u”.

Fig. 1. The first four transport polynomials of order p =
0,p = 1,p =2 and p = 3 plotted in a computational space-
time domain (x,¢) € [—1,1] x [-1,1]

3 Results

As a first test of the new method, we simulate a Gaus-
sian wave in a domain with an interface between two
media at x = —5. For obtaining Fig.[2] we set P = 10,
Ny = 30 and N; = 60. The medium left of x = —5isa
medium with 4 = 1 and & = 16. The space—time solu-
tion shows the right behavior in each medium. At the
interface a partial reflexion occurs with the right am-
plitudes of the reflected and transmitted waves. Also
the speed-of-light in the medium changes (by a factor
of four) resulting in a different trace-angles. In Fig.[3]
the relative error of the vacuum simulation is plotted
against the number of the Degrees of Freedom (DoF).
We obtain exponential convergence of the relative er-
ror measured in the £ norm.
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Fig. 2. The electric field of a 1D Gaussian wave, simulated
with the DGT-FEM. The solution in the whole space-time
domain of interest (x,t) € [—15,15] x [0,60] is displayed. A
medium interface is set at x = —5.
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Fig. 3. The relative error of the vacuum simulation plotted
against the number of the Degrees of Freedom.
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