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Summary. A nanoscale double-gate MOSFET is simu-
lated by using a model based on the maximum entropy prin-
ciple (MEP) by including the heating of the crystal lattice.
The influence of this latter on the electrical performace of
the device is discussed.

1 Mathematical model and simulations

The main aim of the paper is to simulate the nanoscale
silicon double gate MOSFET (hereafter DG-MOSFET)
reported in Fig. 1, by including also the crystal heat-
ing which can influence the electrical properties of
the device and pose severe restrictions on its perfor-
mance. In fact the phonons emitted by hot electrons
create a phonon hot spot which increases the gener-
ated power density of the integrated circuits. This ef-
fect is becoming crucial by shrinking the dimension
of the devices which is now below 100 nm, a length
comparable with the wavelength of acoustic phonons
[1, 2].

We consider a DG-MOSFET with length Lx= 40
nm, the width of the silicon layer Lz = 8 nm and the
oxide thickness tox = 1 nm. The n+ regions are 10 nm
long. The doping in the n+ regions is ND(x) = N+

D =
1020 cm−3 and in the n region is ND(x) = N−D = 1015

cm−3, with a regularization at the two junctions by a
hyperbolic tangent profile.

Due to the symmetries and the dimensions of the
device, the transport is, within a good approximation,
one dimensional and along the longitudinal direction
with respect the two oxide layers, while the electrons
are quantized in the transversal direction. Six equiv-
alent valleys are considered with a single effective
mass m∗ = 0.32me, me being the free electron mass.

Since the longitudinal length is of the order of
a few tents of nanometers, the electrons as waves
achieve equilibrium along the confining direction in a
time which is much shorter than the typical transport
time. Therefore we adopt a quasi-static description
along the confining direction by a coupled Schrödinger-
Poisson system which leads to a subband decomposi-
tion, while the transport along the longitudinal direc-
tion is described by a semiclassical Boltzmann equa-
tion for each subband.

Numerical integration of the Boltzmann-Schrödinger-
Poisson system is very expensive from a computa-
tional point of view, for computer aided design (CAD)
purposes (see references quoted in [3, 4]) In [3] we
have formulated an energy transport model for the
charge transport in the subbands by including the non
parabolicity effects through the Kane dispersion re-
lation. The model has been obtained, under a suit-
able diffusion scaling, from the Boltzmann equations
by using the moment method and closing the mo-
ment equations with the Maximum Entropy Princi-
ple (MEP). Scatterings of electrons with acoustic and
non polar optical phonons are taken into account. The
parabolic subband case has been treated and simu-
lated in [4].

The crystal heating is included adding a further
equation for the lattice temperature TL in the same
spirit as in ref.s [5, 6]

ρcV
∂TL

∂ t
−div [K(TL)∇TL] = H, (1)

with ρ and cV silicon density and specific heat respec-
tively. H is the phonon energy production given by

H =−(1+PS)nCW +PS J ·E, (2)

where PS plays the role of a thermopower coefficient,
nCW is the electron energy production term with n
electron density, and J is the current. The electron
density is related to the surface density in each sub-
band by the relation

n = ∑
ν

ρν |φν |2

where φν are the envelope functions obtained solving
the Schrödinger-Poisson system. In [5] a more general
model for H has been proposed.

We stress that the lattice temperature enters into
the electron-phonon scattering and in turn in the pro-
duction terms of the balance equations for the elec-
tron variables. The main aim of the present paper is to
address the importance of the crystal heating on the
electric performance of the device.

A suitable modification of the numerical scheme
for the MEP energy transport-Schrödinger-Poisson
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system developed in [4] is proposed which includes
also the discretization of the lattice temperature bal-
ance equation via an ADI approach. Since the charac-
teristic time of the crystal temperature is about one or
two orders of magnitude longer than that of electrons,
a multirate time step method is employed as in [6].

In the figures we report some preliminary results.
It is possible to see a tremendous raise of the crys-
tal energy kBTL, which at room temperature is about
0.0259 eV, near the drain where the electron energy
has its maximum values due to the high electric field
present there. It is likely that the lattice temperature
reaches the silicon melting temperature. This poses
severe restrictions on the source/drain and sorce/gate
voltages with stringent design constraints.

Fig. 1. Schematics representation of the simulated DG-
MOSFET
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Fig. 2. Electron density when the applied potential between
sorce and drain is VSD = 0.1 V and sorce and gate are
equipotential
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Fig. 3. Electrostatic energy when the applied potential be-
tween sorce and drain is VSD = 0.1 V and sorce and gate are
equipotential
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Fig. 4. Electrostatic energy when the applied potential be-
tween sorce and drain is VSD = 0.1 V and sorce and gate are
equipotential
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