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Summary. In this paper we derive a new stepwise embar-
rassingly parallel, globally convergent algorithm for linear
and non-linear electrostatic problems. It is based on a new
interpretation of the classical finite element formulation.
We show problems with cellwise linear materials and prove
convergence of the proposed method.

1 Overview

Nodal search finite element methods have been de-
rived in [1] using a non-Galerkin approach. It allows a
natural decoupling of finite elements similarly to dis-
continuous Galerkin approaches [2]. This paper will
lay out this algorithm using a variation of the usual
variational Galerkin method based finite element ap-
proach (see e.g. [3]) for equation 1.

div(εgrad(φ)) = ρ (1)

Using the Galerkin finite element approach (see e.g.
[3]) has the advantage that it is easier to apply, broadly
known, and seems to yield better conditioned sys-
tems, although it is less general then the initial ap-
proach in [1].

1.1 A Special Finite Element Representation

The proposed algorithm is based on a Lagrange finite
element formulation, in which the resulting problem,
after using the Galerkin approach, has the form

PT APα =−PT Aλ0 , (2)

where A is a block diagonal matrix, whose sub-matrices
describe the local finite element stiffness matrices for
associated single mesh cells, λ0 is a vector contain-
ing boundary data, α is the vector of global degrees
of freedom (dof), and P is a very sparse incidence
matrix mapping global to local degrees of freedom.
The mathematical details of this are discussed in the
full paper. Since A is positive definite and symmetric,
solving equation 2 is equivalent to solving

(λ0 +Pα)T A(λ0 +Pα)
!
= min . (3)

Equation 3 is solved directly, using a direct search op-
timization algorithm, that changes only one global de-
gree of freedom in each step. The used algorithm is
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Fig. 1. Schematic sketch of a 2D Lagrange FEM mesh with
affected cells and independent degrees of freedom. The af-
fected cells of the dof associated with node p are blue, the
ones associated with node q are red, and the ones associated
with the node r are dotted. The set {p,q} is a set of inde-
pendent degrees of freedom, while the set {p,r,q} is not.

a simple generating set search method as discussed
in [4]. Further in the nonlinear case A depends on α

which requires some additional care. This approach
results in an algorithm with global convergence, even
in many non-linear cases. The mathematical details
and constraints are discussed in the full paper.

2 Nodal Search

The nodal search algorithms exploits the fact, that a
change in a global degree of freedom only affects a
very local area of an approximation function build
from finite elements. The basic idea is to find first, for
every degree of freedom, the area where a change in
the degree of freedom actually has an effect on the
associated approximation function. This is done by
finding the affected cells, as shown in Fig. 1, of ev-
ery global degree of freedom.

Next, the algorithm determines a decomposition
of all global degrees of freedom into a set of sets of
independent degrees of freedom. Where independent
means that the degrees of freedom have no affected
cells in common, as shown in Fig. 1. A rigorous math-
ematical analysis of this decomposition approach is
provided in the full paper. Last, an iteration over nodal
search steps is done which terminates when the step-
length becomes lower then a given threshold.

A nodal search step tries to improve the value
of one node’s dof. This leads to a formulation that
is similar to a multiplicative Schwarz method and in
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fact is, for first order finite elements, a multiplicative
Schwarz method, which is shown in the full paper.
Further in the first order case it is similar to the al-
gorithm in [5] as well. The computation of a nodal
search step obviously depends only on a few degrees
of freedom. A nodal search step on node l improves
an existing approximation described by α to a new
better approximation αnew via αnew = α +θlel where
the nodal search step length θl can, for cellwise linear
isotropic materials, be computed by

θl =−
ξl +vT

l α

χl
, (4)

where ξl ,χl are real numbers and vl is a sparse vector
for all l. All values i.e. ξl ,χl and vT

l can be computed
in parallel using λ0,P and A.

Further, the computation of all θl in a set of inde-
pendent degrees of freedom is embarrassingly paral-
lel, which is proven in the full paper. Thus, iterating
through all sets of a decomposition into sets of inde-
pendent degrees of freedom, yields a stepwise embar-
rassingly parallel algorithm.

3 Test Implementation and Results

The algorithm has been implemented with OpenMP
parallelization. This test implementation uses second
order tetrahedral elements, and an ad-hoc iterative
mark and sweep algorithm to create the required de-
composition of degrees of freedom into sets of inde-
pendent degrees of freedom. The algorithm has been
tested using the real world problem shown in Fig.2.
The details of the model are described in [6].

Fig. 2. A real world insulator model for testing, meshed us-
ing second order tetrahedrons with about 4.8 million nodes.

These results show, that the algorithm does not
only work in theory, but in practice as well. The re-
sults show that the convergence is slow but secure
even without preconditioning on ill conditioned sys-
tems. Its speed, of course, depends on the size of the
problem and the amount of parallel processors. Thus
a variant of this algorithm, e.g. extended by a multi-
grid scheme, might become a good default algorithm,
on GPGPU systems, similarly to the approach in [7].

Fig. 3. A result for the geometry in Fig. 2 visualizing
the electric potential by color and equipotential surfaces
by black lines. Computation took about 10h on a 48core
(2.8GHz AMD Opteron) machine.

4 Outlook

We have presented a new massively parallel algorithm
for solving electrostatic problems. The full paper pro-
vides a rigorous mathematical treatment of the algo-
rithm derivation and convergence with a lot more ref-
erences. Further, the above and additions numerical
results are discussed in detail, regarding convergence,
speed and stability.
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