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Summary. A mesh scheme is developed to deal with 
curved boundaries of the geometry using quadrilateral 
elements for the Discontinuous Galerkin Method 
(DGM). To achieve this, we first generate the inner 
part of the mesh in a structured manner and connect it 
to the curved boundary with a so-called buffer layer. 
Elements in the buffer layer employ a high order 
mapping to fit the boundary. We demonstrate high 
order convergence rates with an electromagnetic 
problem in a cylindrical cavity. Furthermore, we show 
that the frequency spectrum, which is extracted from 
the time-domain signal is clean, i.e., no spurious modes 
are observed in any of the examples considered. 
 
1 Introduction 
 
The DGM is a high order numerical method. In 
order to maintain its high order accuracy in the 
presence of curved objects, boundaries (surfaces) 
of the geometries have to be described with high 
order accuracy as well. The study in [1] shows 
that meaningful high order accurate results can be 
obtained only if the curved boundaries are 
considered with high order geometric 
approximations. In [2] problems in a cylindrical 
cavity are solved by pushing the straight edges of 
elements onto the exact circular boundary.  

Both implementations [1, 2] employ 
triangular meshes for the DGM and achieve high 
order convergence. We propose an alternative 
mesh scheme based on Cartesian grids. It 
generates quadrilateral meshes in a simple 
process for both, exact geometries and objects 
represented by Non-Uniform Rational B-Splines 
(NURBS). The scheme enjoys many advantages 
due to the ability of applying tensor product bases 
within quadrilateral elements (see e.g. [3, 4]). 
 
2 Body-fitting mesh scheme 
 
We generate a set of buffer elements in the gap 
between the exact curved boundary and the 
interior structured mesh as demonstrated in Fig. 1. 
Figure 2 (left) shows that if no buffer layer is 
applied, degenerated elements (marked with 
arrows) are likely to occur , which is guaranteed 
not to happen with the insertion of a buffer layer 
[5] (right). Figure 3 gives an example, where a  

Fig. 1: Buffer layer mesh scheme based on a 3-by-3 
regular mesh. 

 

 
Fig. 2: Curved elements of 2nd order without (left) and 

with (right) buffer layer scheme based on a 9-by-9 
regular mesh. 

 

 
Fig. 3: Buffer layer mesh with NURBS. The 

approximation can be exact for both a circle (left half) 
and an arbitrary curve (right half) using control points. 

 
mesh is generated fitting a geometry described by 
NURBS. For performing the local element 
deformation in the buffer layer we apply 
Transfinite Interpolation (TFI) [6]. 
 
3 Solving electromagnetic problems 
 
We consider transverse magnetic (TM) problems 
in a two-dimensional circular domain Ω  with the 
boundary Ω∂ . The Maxwell’s equations read as 
follows: 
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where 
xH  and 

yH  are the x- and y-components of 
the magnetic field vector, and 

zE  the z-
component of the electric field vector. The 
parameters ε and μ are the electric permittivity 
and the magnetic permeability, respectively.  

In this DGM approach, Legendre polynomials 
are applied as basis functions and the explicit 
leap-frog scheme is used for the time 
discretization [4]. The TM31 mode in a 
cylindrical cavity is chosen for a convergence 
study. The errors are measured in the L2 norm at 
the end of one periodic oscillation.  

  

Fig. 4: For a resonant mode in the cylindrical cavity, 
DGM with upwind flux shows (p+1) convergence 

using body-fitting meshes. 

 

Fig. 5: Analytical values (red squares) and captured 
numerical eigen-modes (blue stems) 

Figure 4 shows that the optimal convergence 
of (p+1) is achieved where p is the polynomial 
order. We also extracted eigenfrequencies via a 
Fourier Transform. The results in Fig. 5 were 
obtained using central fluxes and 32 elements of 
6th order. The eigenfrequencies obtained from the 
time-domain solution agree with the analytical 
ones for frequencies up to 0.8 GHz. Above this 
frequency the spatial resolution is insufficient 
leading to errors. 
 
4 Conclusions 
 
A body-fitting mesh scheme employing high 
order curved elements with the DG method is 
proposed. High order convergence rates in the 
presence of curved objects are observed. 
Furthermore, we extracted frequency spectra 
from simulations of a cylindrical cavity and 
found the agreement between the numerical 
results and the respective analytical solutions, i.e., 
clean spectra are obtained. 
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