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Summary. This work is devoted to the robust and efficient
solution of an optimal control problems for time-harmonic
or time-periodic eddy current problems in the presence of
pointwise state constraints imposed on the Fourier coeffi-
cients. For the discrete version of the linearized and re-
duced optimality systems of the Moreau-Yosida penalized
minimization problems, condition number estimates of the
preconditioned systems are provided. We show, that block-
diagonal preconditioners can lead to parameter-robust and
efficient solution strategies for these kind of problems.

1 Introduction

During recent years, the importance of solving opti-
mization problems with constraints in form of partial
differential equations has been growing. Usually, the
partial differential equation is treated as a constraint,
and the minimizing solution is determined by solving
the corresponding optimality system. Typically, this
approach leads to very bad condition systems of lin-
ear equations, and therefore the iterative solution of
these kind of equations is a delicate issue.

In [2l|3]] an optimal control problem with a simple
time-periodic parabolic partial differential equation as
the state equation is considered. The optimality sys-
tem is discretized in terms of the harmonic balance
finite element method, and parameter robust solvers
are constructed for the resulting frequency domain
equations. The aim of this work is to extend these
ideas also to the eddy current optimal control prob-
lem, cf. [4}|5]]. Therefore, we consider optimal control
problems, where the partial differential equations is
given by time-harmonic or time-periodic eddy current
problems. Indeed, in the time-periodic setting, we es-
tablish the harmonic balance finite element method, in
combination with efficient and robust solvers for the
resulting frequency domain equations, as a powerful
tool for solving optimal control problems in compu-
tational electromagnetics.

Furthermore, we include pointwise state constraints
in our model, since they may be important to filter out
undesired singularities in the solution of the eddy cur-
rent problem.

2 Optimal control problem

We concentrate on the solution of the following opti-
mal control problem:
min

J(yS,yhutu®), (1)
(y¢,y%,u,u’)eHg (curl)2 xL, ()2

subject to
curl(vcurly®) + woy® = u, inQ,
curl(vcurly®) — woy® = v’ in Q, 2)
yexn=y*xn=0, on dQ,

and to the pointwise state constraints

yi(x) <yi(x) < y{)(x), ae. inQ,je{c,s}. 3

The quadratic cost functional is given by

syt i= 5 X [ - vl Al
Jjele.s}
The regularization parameter A > 0, the model param-
eters 0, v and @, and yg,¥3, Y5, Y5 Ya, ¥p, € L2(R2) are
given data.
Following [6]], we use a Moreau-Yosida regular-
ization, that penalizes the pointwise state constraints,
i.e., we add the penalty term

2o X lmax(@,y3 — s}l + min(0. 3~ 1),
je{e.s}

€ > 0, to the cost functional J. The resulting mini-
mization can be solved by deriving the (reduced) opti-
mality system. Due to the penalized state constraints,
the optimality system becomes nonlinear. The non-
linearity can be dealt with in terms of a primal dual
active set strategy, that is known to be equivalent to
the semi-smooth Newton method [1]]. At each New-
ton step, a two-fold saddle point problem has to be
solved. Typically, the model parameters o, v and o,
the regularization parameters A and €, as well as the
discretization parameter s, coming from the finite el-
ement approximation, impinge on the convergence of
any iterative method applied to the unpreconditioned
problem. Therefore, the aim of this paper is to present
a preconditioning technique for the robust and effi-
cient solution of the saddle point system at each New-
ton step.



2

3 Block-diagonal preconditioner

The finite element discretization of the penalized, lin-
earized and reduced optimality system of (T)-(3), yields
the linear system of equations

Ax =D, “)

where the system matrix .o is given by

M+ 1M 0 Ky, —Mgyo
of = 0 M+1IMgsMys Ky
- K, Mos —3M 0
~My.s K, 0 —iM

Here K, corresponds to the stiffness matrix, M to the
mass matrix, Mg s to a weighted mass matrix, and
Mge and Mgs to the mass matrices on the active sets
&° and &*, respectively. In order to solve (), we fol-
low the strategy used in [S]] and construct a precon-
ditioned MinRes solver. We propose and analyze the
block-diagonal preconditioner

1 1
7E7 —E )
it
where E = Ky + Mo, + 7M. We show, that the
condition number of the preconditioned system can
be estimated by a constant, that is independent of the
mesh size A, the regularization parameter A, the model

parameters o, v, and m, as well as the active sets &°
and &* from the primal dual active set strategy, i.e.,

% = diag (VAE,VAE, 5)

k(¢ ') <c#c(w,0,hA E,E.

Therefore, the number of MinRes iterations required
for reducing the initial error by some fixed factor
0 € (0,1) is independent of @, o, h, A, &°, and &*.
In practice, the diagonal blocks E of (3)) are replaced
by appropriate efficient and parameter robust precon-
ditioners.

4 Time-periodic optimization

The presented solving technique provides a robust
tool for solving optimal control problems with a time-
harmonic eddy current problem as the state equation.
Indeed, the theory can be extended to time-periodic
optimal control problems of the form:

. LT 2 AT
minJ(uw.y) =5 [ ly=valgat+ 5 [ fuli

subject to
G% +curl(vecurly) = u, inQ x(0,7),
yxn=0, ondQ x (0,T),
y(0)=y(T), inQ,

(6)

with state constraints associated to the Fourier coeffi-
cients of y. Due to the periodic structure, a time ap-
proximation of the state y and the control u in terms
of a truncated Fourier series can be used, i.e.,

N

y(x,1) = Y yi cos(kwr) 4y} sin(kox).
k=0

Due to the linearity of (6), we obtain a decoupling of
the frequency domain equations with respect to the
individual modes k = 0,...,N. For each mode, a lin-
ear system of equations, that obtains high structural
similarities to (@) has to be solved. Hence, an efficient
and parameter robust solver can be constructed in the
same manner as done in the previous section. Indeed,
this approach is an extension the harmonic balance fi-
nite element method to optimal control problems.

5 Conclusion

The method developed in this work shows great po-
tential for solving both time-harmonic and time-periodic
eddy current optimal control problems in an efficient
and robust way.
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