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Instructions for Speakers (SCEE 2012)

• If possible speakers should bring their presentations in electronic form (PDF or
PowerPoint) on an USB memory stick and give it to SCEE 2012 staff no later than
15 Minutes before the start of the session. File names should start with the speaker’s
last name.

• In exceptional cases speakers may use their own laptops. It is their responsibility
to make sure that the projection works. To that end they are strongly encouraged
to test the setup during the break before their session.

• SCEE addresses a broad audience with diverse backgrounds and speakers should
take this into account as well as the focus of the conference on computational aspects.

Instructions for Poster Presenters:

Day & Time Session type Location

Tuesday, 14:50 - 16:20 regular session ETH, Zurich
Wednesday, 14:50 - 16:20 regular session ETH, Zurich
Wednesday, 14:50 - 16:20 Young Scientist Award session ETH, Zurich
Thursday, 12:30 - 13:30 Industry Poster session ABB, Baden

Location ETH Zurich: Main Building, E-Floor

Format: Maximum size is A0

When: Please look at “List of Contributors” in ”Conference Program and Book of Ab-
stracts”, where you can find your personal session day.

Procedure

• All posters can be attached to vacant poster walls already on Tuesday morning in
the ETH Main Hall.

• For all who participate in the Young Scientist Award, please use poster walls that
are especially marked for that (label with ”Young Scientist Award”)

• The posters should be removed on Friday at 12:00 at the latest

• During your poster session you are expected to stand next to your poster during
the entire session ready to answer questions. 1

Industry Poster Session

For all those who present their poster on Thursday, please do not forget to bring it to
ABB in Baden.

1Short leaves are permitted.
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General information

• WLAN

You will have WLAN access at the ETH conference venue. Detailed information
will be handed out at the registration desk.
WLAN access on Thursday at ABB Baden: Access information is available in the
Bardeen seminar room.

• Lunch at the ETH-Mensa

For the Mensa, please take the lift to the level B and follow the signs.

• Conference Dinner

Conference badges are considered as ’Conference Dinner’ vouchers (Thursday).

• Industry day participants

Badges and conference dinner vouchers for visitors of only the industry day can be
picked up at the ABB registration desk on Thursday (Mrs. Weber).

• Lunch and Industry Poster session at ABB

At ABB Baden-Dättwil we will first have Lunch in the “Gartenhaus” from
12:00 - 12:30. Afterwards coffee will be served together with the poster session
in the “Foyer” from 12:30 - 13:30.

2 SCEE2012 
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ABB Corporate Research Dättwil 

1   Euler Auditorium (Plenary Sessions) 
2   Bardeen Seminar (WLAN) 
3   Gartenhaus (Lunch) 
4   Foyer (Co�ee + Posters)

Address

ABB Schweiz AG, Corporate Research
Segelhofstrasse 1k
CH-5405 Baden-Dättwil

Schloss Wildegg
Effingerweg 5
CH-5103 Schloss Wildegg

 

ABB Reception 

2 

3 

1 

4 

ABB Restaurant 

5 SCEE2012



6 SCEE2012



     Schedule

                     11 - 14 September 2012

Tuesday Wednesday Thursday Friday
Industry Day at

ABB

08:00 - 08:45 Registration      Bus transfer
08:45 - 09:00 Opening      to Dättwil

09:00 - 09:40  Andreas Klöckner  Alper Demir Welcome  Sascha Schnepp
09:40 - 10:00  Stefan Kurz  Kai Bittner  Didier Cottet  Nicolay Komarevskiy
10:00 - 10:20  Timo Hülsmann  Timo Rahkonen  Thorsten Steinmetz  Mark Blome

10:20 - 10:50 Coffee break Coffee break Coffee break Coffee break
10:20 - 10:40

10:50 - 11:10  Irene Hiltunen  Oratio Muscato 10:40 - 12:00  Aram Markosyan
11:10 - 11:30  Matteo Porro  Vito Dario Camiola  Utz Wever  Davide Cagnoni
11:30 - 11:50  Bastian Bandlow  Evelyne Knapp  Sebastian Schöps  Christof Kaufmann
11:50 - 12:10  Aytac Alparslan  Carlo de Falco  Maximilian Wiesmüller 11:50 - 12:30

Lunch 12:00 - 12:30 Giuseppe Nicosia
Industry Poster Session

13:30 - 14:10  Olivier Le Maître  Karl Meerbergen 12:30 - 13:30 12:30 - 12:45

14:10 - 14:30  E. Jan W. ter Maten  Judith Schneider 13:30 - 14:30 Closing
14:30 - 14:50  Michaela Mehlin  Lihong Feng Lab Visit

14:50 - 16:20    Coffee break  +  Coffee break  + Poster 14:30 - 15:50
   Poster Session  Sessions (regular + Award)

    Lin Zschiedrich 13:00 

16:20 - 16:40  Jian Cui  Ulrich Matthes     Lucas Kostetzer Lunch
16:40 - 17:00  Kersten Schmidt  Nicodemus Banagaaya     Mustafa Boyvat

17:00 - 17:20  Alberto Paganini  André Bodendiek 16:00 Departure
17:20 - 17:40  Nils Lavesson  Martin Hess   Excursion +

19:00 Workshop Apéro
  Conference Dinner

Locations: Bus to Baden/Dättwil: ETH Polyterrasse, see also map at page 4
Registration: ETH Main Building, F floor, "Uhrenhalle"
Workshop Apéro: Dozentenfoyer, Main Building, J floor (lift east)

Oral Presentations: Main Building, F floor, F5
Poster Presentations:   Main Building, E floor, Main Hall

Coffee breaks: Main Building, E floor, Main Hall

Lunch: ETH Mensa, Main Building, B-Floor

Lunch break12:10 - 13:30 Lunch break

7 SCEE2012



Sessions for Tuesday:

CE: Computational Electromagnetics

Chairman: Pascal Leuchtmann

Ursula van Rienen

MM: Mathematical and Computational Methods

Chairman: Ralf Hiptmair

Michael Günther

Poster Session:

Chairman: Wil Schilders

Contributors of Poster Session (see P.115/116):

Daniele Altomonte
Oana Antonescu
Matthias Bollhöfer
Angelo Brambilla
Beatrice Bugert
Ignasi Colominas
Luca Di Rienzo
Thomas Flisgen
Antti Hannukainen
Magnus Herberthson
Michael Kolmbauer

Fritz Kretzschmar
Bastiaan Michielsen
Andrey Pethukov
Adina Racasan
Andreas Rathsfeld
Santi Rizzo
Nunzio Salerno
Eike Scholz
Murat Simsek
Andreas Stock

8 SCEE2012



Tuesday, September 11
Invited talks        

 Contributed talks
Chair page

09:00 - 09:40 A. Klöckner Transformational programming for time- and frequency-domain 23
EM simulation

09:40 - 10:00 St. Kurz Improved electromagnetic modelling and simulation of axial 25
flux machines

10:00 - 10:20 T. Hülsmann Computation of optimal model parameters of an extended 27
Brauer model for ferromagnetic material behaviour

10:20 - 10:50 Coffee break (sponsored by Maschinenfabrik Reinhausen)

10:50 - 11:10 I. Hiltunen Broad band surface impedance boundary conditions for higher 29
order time domain discontinous Galerkin method

11:10 - 11:30 M. Porro  Bulk and interface balance equations for organic solar cell 31

11:30 - 11:50 N. Bandlow Electromagnetic eigenmode characterization by sensitivity 33
analysis simulation

11:50 - 12:10 A. Alparslan Analysis of photonic structures in layered geometries  by MMP 35

12:10 - 13:30 Lunch

13:30 - 14:10 O. LeMaître Stochastic spectral methods for uncertainty propagation in 37
numerical models

14:10 - 14:30 E. ter Maten Robust time-domain source stepping for DC-solution of circuit 39
equations

14:30 - 14:50 M. Mehlin High-order local time-stepping with explicit Runge-Kutta methods 41

14:50 - 16:20         Coffee break  (sponsored by Maschinenfabrik Reinhausen) + Poster Session

16:20 - 16:40 J. Cui Body-fitting meshes for the discontinuous Galerkin methods 43

16:40 - 17:00 K. Schmidt Robust transmission conditions of high order for thin conducting 45
sheets

17:00 - 17:20 A. Paganini Efficient convolution based impedance boundary conditions 47

17:20 - 17:40 N. Lavesson Modeling of streamers in transformer oil using OpenFOAM 49

19:00 Workshop Apéro in the Dozentenfoyer
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Sessions for Wednesday:

CS: Circuit and Device Modelling & Simulation

Chairman: Georg Denk

Vittorio Romano

MOR: Model Order Reduction

Chairman: Gabriela Ciuprina

Jan ter Maten

Poster Session:

CS/MOR + Young Scientist Award

Chairman: Georg Denk

Contributors of Poster Session (see P.115/116):

Regular Poster Session Young Scientist Award

Gabriela Ciuprina Daniele Altomonte
Selçuk Emiroglu Oana Antonescu
Claudia Hebedean Nicodemus Banagaaya
Van Hai Jorks Beatrice Bugert
Umesh Kumar Davide Cagnoni
Giovanni Mascali Vito Dario Camiola
Claudia Pacurar Jian Cui
Ihsan Pehlivan Selçuk Emiroglu
Timo Rakhonen Thomas Flisgen
Yilmaz Uyaroglu Claudia Hebedean

Irene Hiltunen
Timo Hülsmann
Van Hai Jorks
Evelyne Knapp
Michael Kolmbauer
Nikolay Komarevskiy
Fritz Kretzschmar
Umesh Kumar
Aram Markosyan
Andrey Petukhov
Matteo Porro
Judith Schneider
Elke Scholz
Murat Simsek
Andreas Stock
Maximilian Wiesmüller

10 SCEE2012



Wednesday, September 12
Invited talks        

 Contributed talks
Chair page

09:00 - 09:40 A. Demir Phase models and phase computations for oscillators 53

09:40 -10:00 K. Bittner Optimal frequency sweep method in multi-rate circuit simulation 55

10:00 - 10:20 T. Rahkonen Polynomial fitting of nonlinear sources with correlating inputs 57

10:20 - 10:50 Coffee break (sponsored by CADFEM (Suisse) AG)

10:50 - 11:10 O. Muscato Heat generation in silicon nanometric semiconductor devices 59

11:10 - 11:30 V.D. Camiola Simulation of a double-gate MOSFET by a non parabolic energy- 61
transport subband model based on MEP including crystal heating

11:30 - 11:50 E. Knapp Electrical modelling of large-area organic light-emitting devices 63

11:50 - 12:10 C. de Falco Numerical estimation of the impact of Energetic disorder on the 65
low-frequency CV characteristics of organic MOS structures

12:10 - 13:30 Lunch

13:30 - 14:10 K. Meerbergen Model order reduction for PDE constrained optimization in 67
vibrations

14:10 - 14:30 J. Schneider Stochastic collocation methods and model reduction for 69
Maxwell’s equations

14:30 - 14:50 L. Feng Automatic model order reduction by moment-matching according  71
to an efficient output error bound

14:50 - 16:20     Coffee break  (sponsored by CADFEM) + Poster Session + Young Scientist Award

16:20 - 16:40 U. Matthes Reduced order modeling of ODE-PDE networks 73

16:40 - 17:00 N. Banagaaya Index-aware model Order Reduction: LTI DAEs in electric 75
networks

17:00 - 17:20 A. Bodendiek Adaptive-order rational Arnoldi method for Maxwell’s equations 77

17:20 - 17:40 M. Hess Reduced basis modeling for time-harmonic Maxwell’s equations 79
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Sessions for Thursday:

I1: Industry Session 1
Chairman: Jörg Ostrowski

I2: Industry Session 2
Chairman: Andreas Blaszczyk

I3: Industry Session 4
Chairman: Bastiaan Michielsen

Industry Poster Session (12:30 - 13:30)

Chairman: Andreas Blaszczyk

Contributors of Poster Session (see P.115/116)

Giuseppe Al̀ı
Andreas Blaszczyk
Marcos Bockholt
Thomas Christen
Yaser A Khalifa
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             Industry Day
  Thursday, September 13
Location: ABB Baden-Dättwil

Invited talks        
 Contributed talks

08:00 Departure: Bus transfer to Dättwil (start ETH Polyterrasse)
Chair

09:00 - 09:20 Welcome by Research Director ABB Switzerland
page

09:20 -09:50 D. Cottet Electromagnetic simulations in power electronic converter design 83

09:50 - 10:20 T. Steinmetz Numerical simulations for power and distribution transformers 85

10:20 - 10:40 Coffee break

10:40 - 11:20 U. Wever Uncertainty quantification from an industrial perspective 87

11:20 - 11:40 S. Schöps Uncertainty quantification of inrush currents in electric machines 89
with respect to measured material data

11:40 - 12:00 M. Wiesmüller Dielectric breakdown simulations of an on-load tap-changer in a 91
transformer considering the Influence of tap leads and windings

12:00 - 12:30 Lunch
12:30 - 13:30 Industry Poster Session

13:30 - 14:30 Lab Visit

14:30 - 15:10 L. Zschiedrich Nonlocal hydrodynamic Drude model of nano-plasmonic optical 93
devices

15:10 - 15:30 L. Kostetzer Model order reduction for efficient battery electro-thermal 95
simulation

15:30 - 15:50 M. Boyvat Metamaterial design for magnetic field shielding 97

16:00 Excursion + Conference Dinner

Program Excursion:

16:00 - 16:15 Meeting time at bus stop

16:30 Departure: bus transfer from Dättwil to Schloss Wildegg

17:00 - 19:30 Apéro + Introduction history of the Schloss Wildegg (18:00-18:20)

19:30 - 22:30 Conference Dinner + "Young Scientist Award" 

22:30 - 22:45 Meeting time at bus stop

23:00 Departure: bus transfer from Schloss Wildegg to Zurich
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Sessions for Friday:

CP: Coupled Problems

Chairman: Andreas Blaszczyk

Bastiaan Michielsen

14 SCEE2012



Friday, September 14

Invited talks        
 Contributed talks

Chair page

09:00 - 09:40 S. Schnepp The discontinuous Galerkin method on dynamical hp-meshes 101

09:40 -10:00 N. Komarevskiy Optimal design of reflecting photonic structures for space 103
applications

10:00 - 10:20 M. Blome Back-reflector optimization in thin-film silicon solar cells using  105
3D finite element simulations

10:20 - 10:50 Coffee break

10:50 - 11:10 A. Markosyan Derivation and test of high order fluid model for streamer 107
discharges

11:10 - 11:30 D. Cagnoni Electro-hydrodynamic numerical modelling of corona discharge 109

11:30 - 11:50 Ch. Kaufmann Efficient simulation of frequency-transient mixed co-simulation 111
of coupled heat-electromagnetic problems

11:50 - 12:30 G. Nicosia Designing high performance electronic devices, circuits and 113
systems

12:30 : 12:45 Closing

13:00 Lunch and Departure
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List of Contributors

page

abstract/poster Contributors Presentation

117 Al̀ı, Giuseppe POSTER SESSION, Thursday

35 Alparslan, Aytac Tuesday, 11:50

119 Altomonte, Daniele POSTER SESSION, Tuesday, AWARD SESS., Wednesday

121 Antonescu, Oana POSTER SESSION, Tuesday, AWARD SESS., Wednesday

75, 123 Banagaaya, Nicodemus Wednesday, 16:40 + AWARD SESSION, Wednesday

33 Bandlow, Bastian Tuesday, 11:30

55 Bittner, Kai Wednesday, 09:40

125 Blaszczyk, Andreas POSTER SESSION, Thursday

105 Blome, Mark Friday, 10:00

127 Bockholt, Marcos POSTER SESSION, Thursday

77 Bodendiek, André Wednesday, 17:00

129 Bollhöfer, Matthias POSTER SESSION, Tuesday

97 Boyvat, Mustafa Thursday, 14:30

131 Brambilla, Angelo POSTER SESSION, Tuesday

135 Bugert, Beatrice POSTER SESSION, Tuesday, AWARD SESS., Wednesday

109 Cagnoni, Davide Friday, 11:10 + AWARD SESSION, Wednesday

61, 139 Camiola, Vito Dario Wednesday, 11:10 + AWARD SESSION, Wednesday

141 Christen, Thomas POSTER SESSION, Thursday

143 Ciuprina, Gabriela POSTER SESSION, Wednesday

145 Colominas, Ignasi POSTER SESSION, Tuesday

83 Cottet, Didier Thursday, 09:40

147 Cui, Jian Tuesday, 16:20 + AWARD SESSION, Wednesday

65 De Falco, Carlo Wednesday, 11:50

53 Demir, Alper Wednesday, 09:00

149 Di Rienzo, Luca POSTER SESSION, Tuesday

151 Emiroglu, Selçuk POSTER SESSION/AWARD SESSION, Wednesday

71 Feng, Lihong Wednesday, 14:30

153 Flisgen, Thomas POSTER SESSION, Tuesday, AWARD SESS., Wednesday

155 Hannukainen, Antti POSTER SESSION, Tuesday

157 Hebedean, Claudia POSTER SESSION/AWARD SESSION, Wednesday

159 Herberthson, Magnus POSTER SESSION, Tuesday

79 Hess, Martin Wednesday, 17:20

29, 161 Hiltunen, Irene Tuesday, 10:50 + AWARD SESSION, Wednesday

27, 163 Hülsman, Timo Tuesday, 10:00 + AWARD SESSION, Wednesday

165 Jorks, Van Hai POSTER SESSION/AWARD SESSION, Wednesday

111 Kaufmann, Christof Friday, 11:30

23 Klöckner, Andreas Tuesday, 09:00
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63, 167 Knapp, Evelyne Wednesday, 11:30 + AWARD SESSION, Wednesday

169 Kolmbauer, Michael POSTER SESSION, Tuesday, AWARD SESS., Wednesday

103, 171 Komarevskiy, Nikolay Friday, 09:40 + AWARD SESSION, Wednesday

95 Kostetzer, Lucas Thursday, 14:30

173 Kretzschmar, Fritz POSTER SESSION, Tuesday, AWARD SESS., Wednesday

175 Kumar, Umesh POSTER SESSION/AWARD SESSION, Wednesday

25 Kurz, Stefan Tuesday, 09:40

49 Lavesson, Nils Tuesday, 17:20

37 Le Mâıtre, Olivier Tuesday, 13:30

107, 177 Markosyan, Aram Friday, 10:50 + AWARD SESSION, Wednesday

179 Mascali, Giovanni POSTER SESSION, Wednesday

73 Matthes, Ulrich Wednesday, 16:20

67 Meerbergen, Karl Wednesday,13:30

41 Mehlin, Michaela Tuesday, 14:30

181 Michielsen, Baastian POSTER SESSION, Tuesday

59 Muscato, Orazio Wednesday, 10:50

113 Nicosia, Giuseppe Friday, 11:50

183 Pacurar, Claudia POSTER SESSION, Wednesday

47 Paganini, Alberto Tuesday, 17:00

185 Pehlivan, Ihsan POSTER SESSION, Wednesday

187 Petukhov, Andrey POSTER SESSION, Tuesday, AWARD SESS., Wednesday

31, 189 Porro, Matteo Tuesday, 11:10 + AWARD SESSION, Wednesday

191 Racasan, Adina POSTER SESSION, Tuesday
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Transformational Programming for time- and frequency-domain
EM simulation

Andreas Klöckner1

Courant Institute of Mathematical Sciences, 251 Mercer St, New York, NYU kloeckner@cims.nyu.edu

Summary. Detailed, high-fidelity electromagnetic simula-
tions entail a significant computational cost, and this cost
may be managed by efficient use of modern computational
resources. Modern many-core architectures pose a chal-
lenge by being both more diverse and more complicated
than conventional computers. This contribution presents strate-
gies and software packages based on run-time code gen-
eration that help deal with this emerging complexity. We
demonstrate their use and effectiveness by applications to
discontinuous Galerkin time-domain and integral-equation-
based frequency-domain EM simulations.

1 Introduction

Graphics processing units (GPUs) and many-core ma-
chines have enjoyed tremendous impact in recent years,
because their use has brought about significant cost
reductions for a number of numerical methods. Yet,
gains from the use of many-core machines have not
been uniformly distributed across methods. Further,
adoption of these machines, despite their advantages,
has been far from universal. These two facts hint at
underlying issues that must be resolved before the
promise of these recent hardware advances is realized.

The first issue is that the choice of computational
method has thus far often been made in complete ig-
norance of machine concerns. Examples of this are
methods that may satisfy some theoretical optimality
criterion, but which are outrun in practice by methods
that make some concessions to the hardware and are
slightly suboptimal in theory. The consequence of this
is that computational methods and their implementa-
tion have merged into one joint design space that can-
not easily be split into separate concerns.

The second issue is that this new hardware re-
quires specialist knowledge to program. Not only must
the programmer be aware of the sometimes intricate
semantics of parallel programming models–she must
also understand the performance implications of each
of the (often many) semantically equivalent ways of
expressing a single computation. And even if the pro-
grammer possesses some intuition on hardware re-
sponse to different coding techniques, any given com-
putational task may still require trying numerous ap-
proaches to achieve good machine utilization. Worse,
this procedure has some likelihood of needing to be
repeated when new generations of the same hardware,

or especially when a different vendor’s hardware is to
be used. All this translates to extra cost, leading many
potential users to forgo the potential execution time
gains of many-core implementation.

2 Transformational programming

Unlocking the benefit of GPUs for a majority of users
is a thorny problem, to which many solutions have
been proposed–too many to even begin to provide
a concise overview in this setting. In 2009, we pio-
neered one very simple starting strategy that has en-
joyed a measure of success in the marketplace, in
the form of our packages PyCUDA and PyOpenCL,
whose use will be briefly discussed. A cornerstone of
this strategy was to enable run-time code generation
(‘RTCG’) [1]. RTCG allows the user to apply more in-
telligence than customarily supplied by compilers to
process and reason about the source code that carries
out a desired computation. The basic flow of infor-
mation in this setting is illustrated in Fig. 1. In other
words, our tool provided, in some sense, the smallest
possible stepping stone for the creation of additional
tools.

Our current work reapplies this recipe of creating
the smallest possible tool at the next higher level of
abstraction, within the field of code generation. We
start from the assumption that a computational task
is given as a mathematical statement in index-based
form, such as

c[i,j] = sum(k, a[i,k]*b[k,j]).

Further, a set of bounds on the loop variables (i, j,
and k in this case) is given as an intersection of affine
constraints, in the notation of the isl integer set library
[4]:

[n] -> {[i,j,k]: 0<=i,j,k<n},

where we note that n, the matrix size, enters as a
run-time-variable parameter. Starting from this math-
ematical statement of the desired operation (along
with declarations specifying data storage formats and
types), the user may then issue transformations that
make the generated code more suitable for a certain
piece of target hardware by better respecting gran-
ularities such as machine vector widths and appro-
priate sizing of prefetch buffers. Importantly, each
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Fig. 1. Operating principle of GPU run-time code generation.

such transformation is guaranteed to preserve the op-
erational semantics meaning of the original, untrans-
formed kernel–but, given the right transformations,
may execute far faster on a given piece of hardware.
Available transformations include strip-mining, loop
unrolling, parallelization, prefetching, cache manage-
ment, and many more.

Like our previous tools, this code generator, called
‘loo.py’, cannot solve all problems encountered in
making GPU programming accessible. Nonetheless,
we claim that what it provides is useful:

• Increase the trial rate of an expert programmer.
Manually carrying out the transformations allowed
by the tool is a tedious, error-prone task. Finding
and correcting these errors takes time that can be
put to better use.

• Provide a stepping stone on which more tools can
be built. Loo.py is deterministic and does not at-
tempt to guess or be intelligent on the user’s be-
half. Tools with such intelligence can be built on
top of loo.py with relative ease.

• Facilitate performance portability. Since loo.py
clearly distinguishes the description of the desired
computation from the transformations achieving
hardware specialization, this latter part may be
changed or adapted to new hardware without hav-
ing to revisit the basic computational goal.

• Channel thought through language design. The
tool enforces a clear separation between math-
ematical and implementation concerns, even if
both influence each other in a conceptually more
abstract design space.

In proposing this tool, we have built upon experience
gained from earlier work [2] on the type of transfor-
mations necessary in GPU programming. In the next
section, we discuss how loo.py conceptually and fac-
tually supersedes this research.

While loo.py bears some similarity to prior ef-
forts in transformational programming (e.g. CUDA-
CHiLL [3]), it is novel because, first, it is not a source-
to-source translator, but instead views transformations
as first-class objects in its language, and second, it in-
tegrates into an existing ecosystem of GPU scripting
tools centered on PyOpenCL.

3 Evaluation and Conclusions

We evaluate our tool by applying it to time-domain
EM simulations using discontinuous Galerkin meth-
ods as well as to singular quadrature tasks originat-
ing from electromagnetic problems in the frequency-
domain, demonstrating the effectiveness of the lan-
guage exposed along with its applicability to real-
world tasks in electromagnetic simulation. We further
show performance results supporting the notion that
high-performance codes on a broad variety of hard-
ware can be reached by the provided transformations.

In providing loo.py, we hope to build a bridge
between computer science innovation in tool build-
ing, and application scientist needs. We hope that the
tool may provide a basis for innovation and discus-
sion in methods for producing both prototype- and
production-grade EM solvers with the least possible
effort.

Acknowledgement. The author’s research was partially funded
by AFOSR under contract number FA9550-07-1-0422, through
the AFOSR/NSSEFF Program Award FA9550-10-1-0180
and also under contract DEFG0288ER25053 by the Depart-
ment of Energy. Loo.py is joint work with Tim Warburton.
Time-domain EM is joint work with Jan Hesthaven and Tim
Warburton. Frequency-domain EM is joint work with Leslie
Greengard and his group.
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Improved Electromagnetic Modelling and Simulation
of Axial Flux Machines

OssiNiemimäki and Stefan Kurz
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Summary. Axial-field permanent magnet synchronous ma-
chines can be tackled by means of the so-called quasi 3D
approach, where the 3D problem is reduced to a family of
decoupled 2D problems. This approach is placed in proper
mathematical context and the modelling error is discussed.
The resulting 2D problems are cast into standard radial flux
topology.

1 Introduction

Axial-field permanent magnet synchronous machines
enjoy increasing importance. In particular, their flat
and compact shape renders them attractive for several
applications, for instance in electric vehicles, elevator
drives, or wind generators. However, when it comes
to electromagnetic modelling and simulation, there is
much less literature and tools available compared to
the standard radial flux topology. Since full transient
3D Finite Element simulations are still at the feasi-
bility limit, the so calledquasi 3D approach is often
reported in literature, both for numerical [3] and ana-
lytical [1,2,4,5] modelling.

The machine geometry is represented by a number
of cylindrical slices, compare Fig. 1(a). Each slice is
then unrolled, which yields the flat geometry depicted
in Fig. 1(b), which we will calltranslational model.
Eventually, the slice might be distorted into the seg-
ment shown in Fig. 1(c), which we will callrotational
model. The latter corresponds with the symmetry cell
in the cross section of a standard radial flux perma-
nent magnet synchronous machine, and can therefore
be computed by well-established methods.

2 Mathematical Modelling

In references [1] – [5] it is usually taken for granted
that the magnetic flux in the machine has no radial
component. It is then claimed that each translational
or rotational model can be analyzed separately, based
on a single component magnetic vector potential. The
torque of the machine is obtained by adding up the
contributions of the individual slices. We will put this
approach into proper mathematical context. For the
purpose of this paper we restrict ourselves to a mag-
netostatic model for each time step.

�
�)

Cylindrical slice

�
�)

Statoriron

�
�)

Permanent magnet

�
�)

Rotor iron

(a) 3D model of a symmetry cell cut by a
cylindrical slice.

(b) Unrolling the slice
yields the 2D transla-
tional model.

(c) The 2Drotational model
is obtainedby distortion.

Fig. 1. Geometry of an axial flux machine. Stator coils
are omitted. Images (a) and (b) are taken from [4, Fig. 1],
reprint with kind permission.

The magnetostatic field in the 3D model is gov-
erned by curlµ−1curlA= J, whereµ is the magnetic
permeability, in general dependent on the field,A is
the magnetic vector potential,B = curlA, andJ is the
total current density, where divJ= 0 holds.J takes
into account both the stator currents as well as the per-
manent magnets, in terms of magnetization currents.
We introduce cylindrical coordinates(r,ϕ,z), com-
pare Fig. 3, left. The vector potential can be gauged
such thatAz = 0 holds, without loss of generality. We
introduce the second order differential operators
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∆ϕz = ∂ϕ µ−1 1
r2 ∂ϕ +∂zµ−1∂z,

∆rz = ∂rµ−1 1
r

∂rr +∂zµ−1∂z.

In the chosen gauge, the double curl equation reads
[

∆ϕz −∂ϕ µ−1 1
r2 ∂rr

−∂rµ−1 1
r ∂ϕ ∆rz

][

Ar

Aϕ

]

=−

[

Jr

Jϕ

]

. (1)

This system can be interpreted as a family of prob-
lems defined on cylindersr =const. in terms of a ra-
dial potentialAr, plus a family of problems defined
on half-planesϕ =const. in terms of an azimuthal po-
tentialAϕ . Both families are coupled via off-diagonal
terms. It can be shown that if and only ifBr = 0 holds,
the field can be described in terms ofAr alone. In
practice, in axial flux machinesBr ≈ 0 holds, so the
first family dominates over the second.

This motivates working with the modelling as-
sumptionBr = 0, that is,Aϕ = 0. In this case, the first
equation of (1) reduces to∆ϕzAr = −Jr, which can
be solved on each cylinderr =const. separately. The
second equation gives rise to a residual

R = ∂rµ−1 1
r

∂ϕ Ar − Jϕ =−∂rHz − Jϕ ,

whereH = µ−1B holds. The residual gives an indi-
cation for the error introduced by the modelling as-
sumptionBr = 0. For an interpretation see Fig. 2.

∫

S
R da=

∫

∂S
H ·dl−

∫

S
Jϕ ·da

r

r1

r2

SJϕ

Fig. 2. The residual may be integrated over rectangleS. A
non-zero residualindicates failure to fulfill Amp̀ere’s law in
zr-planes.

For fixed radiusr, introduce a new coordinate
ℓ= rϕ. In coordinates(ℓ,z) the equation to be solved
for Ar reads(∂ℓµ−1∂ℓ+ ∂zµ−1∂z)Ar = −Jr, the gov-
erning equation for the translational model, Fig. 1(b).

From a practical point of view, existing software
for the numerical analysis of standard radial flux ma-
chines should be employed. To that end, a transfor-
mation is required that maps linesℓ =const. to radial
half-lines, while linesz =const. shall be mapped to
concentric circles. We pick the conformal mapZ =
cexp(W /r) : W = ℓ+ iz 7→ Z = x+ iy = ρ exp(iϕ),
for fixed c,r ∈ R. The transformation is depicted in
Fig. 3.

Let Az(x,y) = Ar(ℓ,z), Jz(x,y) = Jr(ℓ,z), which
yields(∂xµ−1∂x+∂yµ−1∂y)Az =−h2Jz, with the con-

z

ℓ

A

B

C

D

ϕ

y
ρ

C

D

ϕ

W

r
A

W = ℓ+ iz

ϕ
x

A B

Z = x+ iy

ϕ

Fig. 3. The conformal mapZ = cexp(W /r) relates the ro-
tational to the translational model, for fixedc,r ∈ R.

formal factor h = r/ρ . This is the usual magneto-
static 2D vector potential formulation, the govern-
ing equation of the rotational model, Fig. 1(c). The
Laplace operator is invariant under conformal trans-
formation, while the current density has to be scaled
by h2. The rotational model can therefore be solved
efficiently with commercially available software, for
each cylindrical slicer =const. that is contained in the
discretization. Relevant postprocessing quantities like
the torque of the machine can be computed once the
solutions for the slices are available.

An example for this approach will be given in the
full paper.
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Computation of Optimal Model Parameters of an Extended Brauer
Model for Ferromagnetic Material Behaviour

Timo Hülsmann1, Andreas Bartel1, Sebastian Schöps1, and Herbert De Gersem2
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Summary. Simulation of low-frequency magnetic fields in
electric machines demands for implicit time integration.
For the nonlinear reluctivity of the ferromagnetic yoke, a
smooth material curve is needed to avoid convergence prob-
lems in Newton’s method. In this paper the Brauer model
is extended to fit the material behavior at low fields more
accurately and to guarantee physically correctness for high
fields. Furthermore, a procedure to obtain optimal parame-
ters is developed and discussed using a numerical example.

1 Introduction

Typically Finite Element (FE) based simulations of
eddy currents use the magnetic vector potential A and
the curl-curl equation

σ
dA
dt

+∇× (ν∇×A) = Js , (1)

with conductivity σ , reluctivity ν and source current
density Js. For iron parts the material relation H(B) =
νB becomes nonlinear, where B = ∇×A is the mag-
netic flux density and H the magnetic field strength.
We neglect anisotropy and hysteresis. Hence, we can
apply H = νB in terms of H := ‖H‖2 and B := ‖B‖2.
Typical models are spline interpolations of measure-
ments, [3], and Brauer’s model, [1]:

Hbr(B) = νbr(B2)B = (k1ek2B2
+ k3)B .

Both allow a simple calculation of the reluctivity ν =
ν(B2) and its derivative d

dB2 ν , needed in the compu-
tation of material matrices occurring in the space dis-
cretization of (1), see e.g. [2]. Brauer’s model is well
understood, e.g., a sensitivity analysis shows that cur-
rents and fluxes through machines are most sensitive
w.r.t. to perturbations in k2 followed by k1 and k3. The
model is sufficiently accurate for medium fields but
the behavior for low fields (Rayleigh region) and high
fields (full saturation, i.e., dH

dB = ν0 as for vacuum)
cannot be represented accurately.

2 Extened Brauer model

For high fields the material behaves like vacuum

Hsat(B) = ν0(B−Bs)+Hs .

For low fields the dependence of B on H is quadratic:

Low Field Medium field

Saturation

H

Hs

Hm

Bm Bs B

Fig. 1. Regions of the H(B)-curve.

Hray(B) =
√

1
4α2ν2

init
+ B

α
− 1

2ανinit

with initial reluctivity νinit and Rayleigh constant α .
In combination we obtain a H(B)-curve as shown in
Fig. 1, with interface points (Bm,Hm) and (Bs,Hs).

Let us determine the coefficients of an extended
Brauer model s.t. the global model is continuous dif-
ferentiable. The classical model does not simply al-
low to replace low field and high field parts. A shift of
the Brauer model enables to fulfill the continuity and
differentiability conditions at Bm:

Hebr(B) = (k1(ek2(B−Bm)2 −1)+νd,m)(B−Bm)+Hm

with νd,m := dH
dB Hray(Bm) the differential reluctivity at

the end of the Rayleigh region. We define the function

H(B) :=


Hray(B) if 0≤ B < Bm ,

Hebr(B) if Bm ≤ B < Bs ,

Hsat(B) if Bs ≤ B .

(2)

To fix the model parameters k1 and k2, we use the
continuity conditions Hebr(Bs)=Hs and dH

dB Hebr(Bs)=
ν0 , and solve each equation for k1:

k1 =

Hs−Hm
Bs−Bm

−νd,m

ek2(Bs−Bm)2 −1
, (3)

k1 =
ν0−νd,m

(2k2(Bs−Bm)2 +1)ek2(Bs−Bm)2 −1
. (4)

From (3) and (4) we find a nonlinear equation for k2 >
0, which is solvable under the conditions ν0 > νd,m

0 <
Hs−Hm
Bs−Bm −νd,m

ν0−νd,m
< 1

3

and Bs > Bm > 0, Hs > Hm > 0, ν0 > νd,m .
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Fig. 2. Low field region.

The Rayleigh constant can be obtained by α :=
(Bm/Hm− 1/νinit)/Hm. Therefore the model (2) can
be fixed from the data p := (νinit,Bm,Hm,Bs,Hs).

3 Optimal Model Parameters

Let us consider measurement points (B j,H j), j = 1,
. . . ,N, of a ferromagnetic material. We assume mono-
tonicity of the data and a distinctive Rayleigh region.

To find optimal model parameters we solve a non-
linear least squares (NLS) problem, i.e.,

min
p

N

∑
j=1

(H(B j;p)−H j)
2

H2
j

. (5)

Proper initial guesses are important because of the
nonliterary. A procedure for this purpose is given by:

i) The fraction of first non-zero measurement points
approximates νinit. Then find index r that mini-
mizes (Hr+1−Hr)/(Br+1−Br). (Br,Hr). It is an
approximation to (Bm,Hm). Compute α and νd,m.

ii) Approximate the beginning of the saturation re-
gion with the last measurement points. Solve (3)
and (4) for k1 and k2 by replacing ν0 with the se-
cant slope νN of the last two measurement points.

iii) If νN ≈ ν0, use the last point as approximation of
(Bs,Hs). Otherwise solve dH

dB Hebr(Bs) = ν0 for Bs
and compute Hs = Hebr(Bs).

iv) Solve the NLS problem (5).

4 Example

For validation we created test data from (2) using
νinit = 400mH−1, (Bm,Hm) = (0.5T, 70Am−1) and
(Bs,Hs) = (2T, 100kAm−1). We sample the first
two regions with 8 equidistant points. We incorporate
Gaussian measurement noise by H̃i = max(0,Hi ·(1+
σXi)), where Xi ∼N (0,1) and σ = 0.1. Fig. 2 and
3 show the fitted results. The proposed initial guess is
sufficient to achieve convergence of the NLS problem.
We obtain a curve close to the original curve.

The extended Brauer model is tested in a 2-D FE
simulation of a transformer at no-load. Simulation re-
sults with the extended Brauer model with parameters
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Fig. 3. Medium field region.
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Fig. 4. Errors |i− î|/(|i|+0.1) of no-load current. The cur-
rent peaks are at 0.01, 0.03 and 0.05.

from above are used as a reference. For the spline
interpolation (cubic and Fritsch-Carlson spline) we
smoothened the noisy samples in the Rayleigh region
with a moving average filter. Errors of the no-load cur-
rent i through the device are depicted in Fig. 4.

The original Brauer model is the computationally
least expensive but yields large errors in comparison
to the reference solution. It cannot match the shape
of the material curve for low and high fields. Spline
interpolated measurements yield medium errors but
need a high number of Newton steps to converge,
cf. [4]. The extended Brauer model is only slightly
more expensive than the original Brauer model but is
the most accurate also in Fig. 4. It also recovers the
reference curve.
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Broad Band Surface Impedance Boundary Conditions for Higher Order
Time Domain Discontinous Galerkin Method
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Summary. An implementation of the broad band Surface
Impedance Boundary Condition (SIBC) for the high or-
der Discontinuous Galerkin (DG) method in the time do-
main is presented. In order to treat the frequency dependent
impedance function a set of auxiliary differential equations
is introduced. The effect of the DG approximation order on
the accuracy will be studied, and the results will be com-
pared with the conventional time domain Finite Element
Method.

1 Introduction
Time domain modeling is very attractive for wide
band electromagnetic problems, since it allows to com-
pute for a large range of frequencies in a single sim-
ulation. However, when the frequency band of inter-
est is wide, the dispersive nature of material param-
eters, i.e. their variation with respect to frequency,
needs to be considered. In order to model disper-
sive electromagnetic materials in time domain simu-
lations, one generally needs to evaluate one or more
convolution integrals. Clearly a direct computation of
convolution terms is too expensive for every prac-
tical computation. For this purpose, several numeri-
cally efficient approaches have been proposed. One
approach is a recursive convolution [7]. Another tech-
nique which is particularly suited for explicit time do-
main simulations is the Auxiliary Differential Equa-
tion (ADE) method. In the following, ADE is ap-
plied in the context of SIBC for arbitrary frequency
dependent electric conductivities. Finite Difference
Time Domain method (FDTD) [11] is widely used
for time domain simulations. It leads to explicit time
stepping and it is straightforward to implement. How-
ever, FDTD has a two important disadvantages: First,
the method loses substantial accuracy at curved ge-
ometrical boundaries. Second, FDTD is at most 2nd
order accurate, thus, it suffers under large numeri-
cal dispersion errors at high frequencies. Finite Ele-
ment Method (FEM) [12] is very accurate as far as
the modeling of arbitrary geometries is concerned.
However, the time domain FEM leads to implicit time
stepping [5], and is therefore numerically extremely
expensive. The Time Domain Discontinuos Galerkin
Method (DG) [3] combines the advantages of the

aforementioned methods: it is free of numerical dis-
persion, modeling of arbitrary geometries is straight-
forward, and due to the global discontinuity of the
basis functions, the resulting time stepping scheme
is explicit. However, due to the discontinuity of ba-
sis functions at cell interfaces, unphysical spurious
modes will occur. A possible cure to the problem of
spurious modes is the application of various penaliza-
tion methods as proposed, e.g., in [3], [1].
In this study, we will describe the implementation of
a wide band SIBC for higher order DG by means
of the ADE method. Furthermore, the effect of dis-
cretization order, rational approximation order for the
impedance function as well as the impact of penal-
ization on the accuracy of DG simulations with SIBC
will be investigated.

2 DG Method
In this study, we will consider the Maxwellian initial
value problem. The three-dimensional computational
domain Ω is discretized into N non-overlapping el-
ements, and on the boundary ∂Ω , the SIBC is ap-
plied. Within an element, the electric field E and the
magnetic flux density B are approximated by a linear
combination of vectorial basis functions φE and φB,
respectively. As both of the basis functions, φE and
φB, are defined cell-wise without global continuity, in
the DG method, a numerical flux approach is applied
in order to impose the neccessary continuity at the in-
terfaces between mesh cells in the weak sense. A de-
tailed despription of the method as well as of the ap-
proximation functions, φE and φB, used in the present
implementation is given in [1].

3 The SIBC Approach
Modeling of media with large but finite electrical
conductivities typically leads to very dense meshes
and thus to small time steps as required for stabil-
ity in explicit time domain simulations. Therefore,
it is desirable to exclude the lossy media from the
computational domain. This can be done by intro-
ducing at the boundary surface of the conductive do-
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main impedance-like conditions, which provide a re-
lationship between the tangential electric field to the
tangential magnetic field components. The classical
SIBC was introduced by Leontovich (cf. [10]). It as-
sumes the lossy surface to be planar and ignores the
tangential variation of the field quantities. The error
of the Leontovich SIBC is order of O(δ 2), where δ is
skin depth, which makes it especially suitable for high
frequencies. [4]. The second order SIBC [6] takes
into account also the curvature of the surface. It is,
furthermore, possible to construct higher order, thus,
more accurate SIBC by taking into account, in addi-
tion, the tangential variation of the field components
along the lossy surface [8]. When the thickness of the
conductive medium is of the order of skin depth, the
electromagnetic fields on the different sides of lossy
medium interact with each other. Also this type of
problems can be modeled by means of SIBC, using
e.g. Sarto’s [9] approach.

4 Approximation of Impedance Function
In order to transform the dispersive impedance func-
tion into the time domain, it is first approximated in
the frequency domain as a series of rational func-
tions [2]. The rational approximation for the tangen-
tial magnetic field can be written as:

Y (ω)Et ≈ Y0Et +
P

∑
i=1

YiEt

jω −ωi
, (1)

where Et is tangential electric field on the surface, P is
the order of the rational approximation, Y0 free space
admittance, Yi and ωi are approximation parameters.
Let us rewrite the rational approximation given in (1)
as Y (ω)Et ≈ Y0 +∑

P
i=1 Yi. The the SIBC condition

transforms in the time domain to

Y0 = Y0Et and
d
dt

Yi −ωiYi = YiEt . (2)

Equation (2) represent the auxiliary differential equa-
tions of the ADE method which need to be solved
for in the time domain together with the full set of
Maxwell’s equations.

5 System of Equations
The system of discrete equations to be solved in the
time domain can be written as:

CEe+ d
dt Mµ h = 0

CHh− d
dt Mε e = CY ∑

P
i=0 Yi

Y0 = Y0et
d
dt Yi −ωiYi = Yie for i = 1...P,

(3)

where CE and CB are curl-matrices obtained by high
order DG discretization, CY is so called ”admittance
flux” matrix, and Mµ and Mε are block-diagonal

mass matrices. In the full paper, the numerical accu-
racy and efficiency of this approach with respect to
discretization order for different rational function ap-
proximations (1) will be discussed.

6 Summary
Dispersive SIBC will be implemented for time do-
main DG method in order to model a wide frequency
band at a single simulation. The frequency dependent
conductivity of lossy surfaces is considered in time
domain by auxiliary differential equations. We will
study the accuracy of the solution for different DG
discretization orders and impedance function approx-
imations, and compare our results with the standard
SIBC-FDTD method.
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Summary. In this communication, we present a computa-
tional model for heterojunction Organic Solar Cells (OSCs)
consisting of a system of semilinear PDEs and ODEs. The
mathematical model is discussed, focusing on the transmis-
sion conditions at material interfaces, together with the nu-
merical method used for its solution. Steady-state and tran-
sient simulations are performed on realistic devices with
various interface morphologies.

1 Introduction and Motivation

In the design of efficient OSCs the impact of mate-
rial interface morphology on performance is currently
considered to be of paramount importance. For this
reason, material scientists are putting much of their
research effort into techniques for controlling inter-
faces down to the nanoscale, for example by studying
materials that have the ability to self-assemble into
ordered nanostructures during the deposition process.
For the same reason, computational models that allow
to estimate device performance carefully accounting
for the material interface geometry and the phenom-
ena occurring on it are in high demand. Previous ap-
proaches in this direction can be found in [1] (for
biplanar devices) and [7]. In this communication we
present our work aimed at extending the model of [1]
to treat arbitrary multidimensional morphologies.

2 Mathematical Model

Let Ω be an open subset of Rd , d = 1,2,3, represent-
ing the geometrical model of an OSC and ννν be the
unit outward normal vector over the boundary ∂Ω .
The device structure is divided into two open disjoint
subregions, Ωn (acceptor) and Ωp (donor), separated
by a regular surface Γ on which νννΓ is the unit nor-
mal vector oriented from Ωp into Ωn. The cell elec-
trodes, cathode and anode, are denoted as ΓC and ΓA,
respectively (see Fig. 1 for the 2D case). Let e, n and p
denote the volumetric densities of excitons, electrons
and holes in the cell, respectively, P be the areal den-
sity of polaron pairs and ϕ be the electric potential.
For any function f : Ω → R, let [[ f ]] := fn− fp, fn
and fp being the traces of f on Γ from Ωn and Ωp,

Ωn

Ωp

Γ

ΓA

ΓC

Γn Γn

Γp Γp

ννν

ννν

νννΓ

xxx

Fig. 1. OSC cell geometry.

respectively. Excitation phenomena occurring in the
bulk are described by the parabolic problem:

∂e
∂ t
−∇ · (De∇e) = Q− e

τe
in Ω \Γ ,

[[e]] = 0, on Γ ,

[[−νννΓ ·De∇e]] = ηkrecP− 2H
τdiss

e on Γ ,

e = 0 on ΓC ∪ΓA,

e(xxx,0) = 0, ∀xxx ∈Ω .

(1a)

Dissociation/recombination of excitons, electrons and
holes into polaron pairs at the material interface is de-
scribed by the ODE:

∂P
∂ t

=
2H
τdiss

e+2Hγnp− (kdiss + krec)P on Γ ,

P(xxx,0) = 0, ∀xxx ∈ Γ .

(1b)

Transport of photogenerated electrons in the acceptor
domain Ωn is described by the parabolic problem:

∂n
∂ t

+∇ ·Jn = 0 in Ωn,

Jn =−Dn∇n+µnn∇ϕ in Ωn,

−νννΓ ·Jn =−kdissP+2Hγnp on Γ ,

−κnννν ·Jn +αnn = βn on ΓC,

n(xxx,0) = 0, ∀xxx ∈Ω .

(1c)

A parabolic problem completely similar to (1c) de-
scribes hole transport in the donor domain Ωp. The
dependence of the electric potential and field on the
space charge density in the cell is described by the
Poisson equation:
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∇ · (−ε∇ϕ) =−qn in Ωn,

∇ · (−ε∇ϕ) = +q p in Ωp,

[[ϕ]] = [[−νννΓ · ε∇ϕ]] = 0 on Γ ,

ϕ = 0 on ΓC,

ϕ =Vappl +Vbi on ΓA.

(1d)

A list of the model parameters with their correspond-
ing physical meaning is reported in Table 1. The
PDE/ODE model (1) has been introduced in [2] and
represents a multi-dimensional generalization of the
1D formulation proposed in [1]. System (1) is com-
pleted by periodic boundary conditions on Γn∪Γp. We
notice that the dissociation and recombination pro-
cesses occurring at the donor-acceptor interface Γ

are dealt with by the nonlinear transmission condi-
tions (1a)3 and (1c)2, whose dependence on the local
electric field magnitude and orientation is contained
in the polaron dissociation rate constant kdiss [2].

Table 1. Model parameters.
Symbol Parameter
µi, Di Mobility and diffusivity of species i, i = e,n, p
Q Exciton generation rate
τe, τdiss Exciton decay and dissociation times
krec, kdiss Polaron recombination and dissociation rates
γ Electron-hole recombination rate constant
η Singlet exciton fraction
H Active layer thickness

3 Algorithms and Simulation Results

System linearization (by a quasi-Newton method) and
approximation are carried out by adapting the ap-
proach used in [3]. Time advancing is treated using
Rothe’s method and adaptive BDF formulas, while
the exponentially fitted Galerkin finite element me-
thod studied in [5] is used for spatial discretization.
The interface conditions at the donor-acceptor inter-
face are taken care of by means of the substructuring
techniques described in [6].
Model (1) is here validated in both stationary and
transient regimes. In a first set of simulations, we
study the finger-shaped heterostructure considered in
[7]. Fig. 2 shows the output current-voltage charac-
teristics predicted by our model, which is in excellent
agreement with that computed in [7]. In a second set
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Fig. 2. Current-voltage characteristics for the finger-shaped
heterostructure investigated in [7].

Fig. 3. Free carrier densities for a device with complex mor-
phology.
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Fig. 4. Contact current density transient at two different
voltage regimes.

of simulations, we test the ability of the model to de-
scribe the behaviour of a cell characterized by a com-
plex interface morphology. Fig. 3 shows the free car-
rier densities computed for a “curly-shaped” geome-
try at short circuit working conditions. In a third set of
simulations, we test the model in the time-dependent
case. Fig. 4 shows the cell current response under two
different biasing conditions for a planar device geom-
etry similar to that studied in [1]. Ongoing activity is
devoted to the investigation of the working principles
of the light-harvesting device described in [4].
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Summary. Computational models of resonant electromag-
netic structures which are bounded by perfectly matched
layers have an eigenvalue spectrum which is spoilt by eigen-
modes which reside within these layers. In the context of the
finite integration technique we apply a computational inex-
pensive sensitivity analysis in order to identify those unde-
sired eigenmodes.

1 Motivation

The computation of electrodynamic eigenmodes of
radiating structures is a challenging task, since the
transition to free-space at the boundaries has to be
modeled. An established technique to model that tran-
sition is the use of a perfectly matched layer (PML)
[5]. The PML causes the eigenvalue problem of Max-
well’s equations to become complex for structures of
any material. Moreover, the PML consists of artifi-
cial materials whose parameters can be large in mag-
nitude, which causes some eigenmodes to be trapped
within the PML. In this contribution we show an com-
putationally efficient analysis which is based on the
eigenvalues’ sensitivity that is able to decide whether
a specific eigenmode is bound to the PML or the
structure. The approach follows an adjoint technique
which is known since quite some time [2, 3]. Recent
advances considering the sensitivity analysis of wave-
guide models has been shown in [1].

2 Computational Approach

The discrete Maxwell’s eigenvalue problem is set up
in the framework of the finite integration technique
(FIT) [4]. The Maxwell grid equations can be written
down in frequency domain, neglecting currents and
charges, for dispersive materials as

C_e =−sMµ(s)
_
h, CT _

h = sMε(s)
_e, (1)

where C∈RN×N is the topological curl-operator con-
sisting of entries with {−1;0;1} and s = iω = 2πi f
is the frequency. The constitutive relations read

__d = Mε(s)
_e and

__b = Mµ(s)
_
h. (2)

An absorbing boundary condition based on complex
metric stretching perfectly matched layer (PML) [5]

can be introduced in FIT in a straight-forward man-
ner. Since the PML is only in the continuous case
perfectly matched a remaining reflection error is in-
troduced that can be controlled by the number and the
step width of the absorbing layers. The introduction
of dielectric and magnetic losses in the PML cause
the diagonal material matrices Mµ and Mε to be-
come complex. The actual frequency dependency of
the components of the material matrices on the PML
parameters reads exemplarily for the permeability

µ
−1(s) =

1+ σn
s

1+ σt1
s + σt2

s2

µ
−1
0 . (3)

In frequency domain we solve the curl-curl eigen-
mode equation for complex resonance frequencies
−s2 and grid-voltages _e , which are derived from (1)
as

A(s)_e =−s2_e, A(s) = Mε−1(s)CT Mµ−1(s)C.
(4)

At this point the eigenvalue problem (4) has a poly-
nomial-type nonlinearity. Since the PML is designed
to operate quite well over a certain frequency range,
the frequency dependent material matrices are eval-
uated at the estimation frequency sest , in order to
linearize the eigenvalue problem (4). Yet, the sys-
tem matrix A(s) remains complex with eigenvalues
−s2. The solution can be computationally expensive,
but yields the modal field distributions as well as
their resonance frequency and quality factors Q =
ℑ{s}/2ℜ{s}. Moreover, the spectrum is spoilt by un-
desired modes, which are trapped within the PML and
occur at similar frequencies like the desired modes.

3 Eigenvalue Sensitivity Analysis

We start with a complex eigenvalue problem of the
type Ax = λx and its derivative

(A′−λ
′I)x+(A−λ I)x′ = 0. (5)

The primed quantities denote derivations with respect
to the design parameter p e.g. A′ := ∂A/∂ p. Follow-
ing the standard perturbation theory [2] the multipli-
cation from the left with the corresponding left eigen-
vector yH and substitution of yHA = λyH (the defini-
tion of the left eigenvalue problem) finally yields the
derivative of the eigenvalue
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λ
′ =

yHA′x
yHx

, (6)

which could be further simplified, if the left and right
eigenvectors were orthonormalized. The left eigen-
vectors yH of a matrix eigenvalue problem yHA =
λyH can be computed as the right eigenvectors of the
matrix’ adjoint AHy = λ ∗y, where ∗ denotes the com-
plex conjugate.

4 Application to an Example in the FIT

The FIT system matrix A from (4) can be made com-
plex-symmetric by a similarity transform with M

ε−1/2 .
The adjoint of the complex-symmetrized matrix satis-
fies

AH
sym = A∗sym, (7)

which is simply the complex-conjugate matrix. Eigen-
vectors of AH are identified as the dielectric grid
fluxes

__d
∗
. However, instead of solving the eigenvalue

problem itself we can get the dielectric grid fluxes
simply from the matrix-vector multiplication given in
the material relation (2).

Figure 1a shows the structure for our numerical
tests, which consists of a small dielectric slab having
εr = 5 in a parallel-plate waveguide. An undesired as
well as an desired eigenmode are included in Fig. 1b
and 1c respectively. The lateral boundaries are mod-
eled by a PML.

a) b) c)

Fig. 1. a) Model of dielectric square having εr = 5. b) Un-
desired eigenmode at 13.76 GHz. c) Structure eigenmode at
12.82 GHz.

In Fig. 2 the loci of eigenvalues are plotted for
different values of the linearization parameter sest . It
turns out that eigenvalues which are weakly depen-
dent on sest are those of structure eigenmodes (◦). For
sensitivity analysis the frequency dependent system
matrix is derived by sest .

Figure 3 shows the magnitude |λ ′| obtained by
(6). Again small values belong to eigenmodes whose
field distribution (cf. Fig. 1c) is primarily concen-
trated within the structure (◦). Eigenmodes whose
field distribution is contained within the PML show
a magnitude of |λ ′| which is larger than zero. The ab-
solute limits for decisions on |λ ′| are the topic for fur-
ther investigations.
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Fig. 2. Loci of eigenvalues λ for linearization parameters
sest ∈ [2πi· 8 GHz,2πi·16 GHz]. Neglectable deviations of
the data sets indicate eigenfrequencies with a field distribu-
tion within structure and low PML dependency (◦).
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Fig. 3. Magnitude of the derivative |λ ′| over ℜ{λ}, lin-
earized at sest = 2πi·12.83 GHz. Small values indicate
eigenmodes that are bound to the dielectric substructure (◦).

5 Conclusion

We present a methodology which is able to decide
which eigenmode belongs originally to the computa-
tional model and which is introduced by the perfectly
matched layers absorbing boundary condition.
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Summary. In this work, a numerical analysis method is
introduced by combining the Multiple Multipole Program
(MMP) and layered geometry Green’s functions. By the
method, several difficulties in the analysis of photonic struc-
tures in layered geometries are eliminated and an efficient
simulation tool is obtained that can analyze both 2D and 3D
geometries.

1 Introduction

The advancements in the fabrication process of pho-
tonic structures, made various nano devices quite pop-
ular, including photonic crystals, chemical and bio
sensors, optical antennas and waveguides [1]. Mostly,
these photonic devices are fabricated in a multilayered
structure. In the numerical analysis of such structures,
the layers are often ignored for the sake of simplicity
of simulations, which can cause substantial inaccura-
cies in the results. Especially for structures that sup-
port Surface Plasmon Polariton (SPP) or guided wave
modes, the errors become so high that the computa-
tions become useless. In order to understand the phys-
ical phenomena related to layered geometries and to
improve the efficiency of the devices, a numerical
analysis tool that takes the layered geometries into ac-
count efficiently is needed. In this paper, a candidate
for such a numerical tool is introduced by combining
MMP and layered media Green’s functions.

2 The Method

Since the main idea of the method introduced, is to
combine MMP and layered media Green’s functions,
both of them will be discussed briefly below.

2.1 MMP

MMP is one of the most reliable and efficient com-
putational tools for the analysis of plasmonic struc-
tures in frequency domain [2]. It is a semi-analytical,
boundary discretization method that uses various an-
alytic solutions of the Maxwell equations or so called
expansions (e.g. plane waves, cylindrical waves, spher-
ical waves, etc.) in order to approximate the fields
scattered by the objects. In the MMP analysis, the
electromagnetic field in domain i (F i) can be writ-
ten as a superposition of the fields generated by the
expansions as:

F i =
Ni

∑
n=1

Ai
nE i

n + error (1)

where E i
n is the field generated by expansion n and

Ai
n is the corresponding complex amplitude. The am-

plitudes are computed in such a way that the weighted
residuals are minimized on the interfaces between dif-
ferent domains.

2.2 Layered media Green’s functions

The Green’s function describes the field generated
by an infinitesimal source at a ceratin location. In
free space, the Green’s function can be represented
by closed form formulations (1D (an infinitely large
plane is the source): plane wave, 2D (an infinitely
long line is the source): cylindrical monopole waves,
3D (a point is the source): spherical dipole waves),
which makes it easy and fast to use them as expan-
sions in methods such as MMP or Method of Mo-
ments (MoM). In the case of a layered geometry, the
Green’s functions can only be obtained by summing
up all the plane waves that are generated at the lo-
cation of the point source, for which the continuity
conditions between different layers are fulfilled ana-
lytically. Since the spectrum of a point source is con-
tinuous (i.e. all the propagating and evanescent plane
waves should be taken into account), the summation
leads to an integral (Sommerfeld integral) with infi-
nite bounds as follows (when the layers are stacked in
y-direction and e−iωt is used):

G(x,y,z) =
1

2π

∫
∞

−∞

∫
∞

−∞

dkzdkxeikzzeikxxG̃(kx,kz)

(2)
where G(x,y,z) and G̃(kx,kz) are the spatial and spec-
tral domain Green’s functions for the given field com-
ponent, respectively. In this calculation, the reflec-
tion and the transmission relations for the given plane
wave is contained in the spectral domain Green’s
function [3]. In general, the integrands of (2) are oscil-
latory and slowly decaying which makes the integra-
tion numerically expensive. This burden can be han-
dled by using series acceleration techniques. In this
work, the Aitken series and weighted averages meth-
ods are used in order to decrease the time needed for
the integrations [4].

Equation (2) is the most general form of the Som-
merfeld integral, which provides the Green’s function
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in 3D. One can obtain the Green’s function in 2D by
(2), e.g., by taking the kz value as a constant for a line
source in z-direction. It is also possible to obtain the
Green’s function of a complex origin source which
generates beams by changing the integration paths, so
that the integrands stay stable. This kind of expan-
sions can be used to decrease the total number of ex-
pansions, especially for long structures compared to
the wavelength.

By using layered media Green’s functions as an
expansion set in MMP, one can decrease the complex-
ity of the problems, since the continuity conditions
on the layered geometry is fulfilled analytically [5].
In the next section, numerical examples will follow,
demonstrating the efficiency of the method.

3 Numerical Examples

As the first example, a 2D triangle scatterer is placed
in a four layered geometry. The result of the sim-
ulation, and the problem specifications are given in
Fig. 1. For this simulation, a total of 76 expansions (38
for the field inside the scatterer (free space monopoles)
and 38 for the field outside the scatterer (layered ex-
pansions)) are used, which makes the maximum rela-
tive error on the interface of the scatterer∼ 0.1%. For
this problem, since the incident field does not propa-
gate in z-direction (kz,inc = 0), the layered expansions
are obtained by (2) with kz = 0.

Fig. 1. Scattered field, magnitude of Hz component in log-
arithmic scale. Incident field: Hz polarized plane wave im-
pinging normally on top of the structure with λ0 = 600nm.
Layer-1(lowermost layer) and Layer-4(uppermost layer) are
free-space, Layer-2: Ag (εr2 =−15.91+ i0.43) d2 = 15nm,
Layer-3: dielectric material (εr3 = 9.0) d3 = 285nm. The
scatterer is Ag elevated 50nm from the boundary between
layers 2 and 3. The side lengths of the scatterer are 160,
160
√

5 and 160
√

5nm with the rounding radius of 30nm.

For the second example, an Ag sphere in a di-
electric slab sitting above an Ag substrate is analyzed.
For this simulation, 73 expansions (1 for the field in-
side the sphere (free-space multipole with max. or-
der and degree of 5) and 72 for the field outside the
sphere (layered expansions)) are used resulting in a
maximum relative error of∼ 0.1%. The result and the
problem specifications are given in Fig. 2.

Fig. 2. Total field, Ey component at an instance of time on
XY -plane (z = 0). Incident field: Vertical electrical dipole
at (1,1,1)µm λ0 = 750nm. Layer-1(lowermost layer): Ag
(εAg =−26.73+ i0.33), Layer-2: dielectric material (εr2 =
9.0) d2 = 800nm and Layer-3(uppermost layer) is free-
space. The scatterer is an Ag sphere with r = 200nm located
at the center of Layer-2.

4 Conclusion

In this paper a numerical tool is introduced by com-
bining layered media Green’s functions and MMP. As
a result, an efficient tool is obtained that can solve the
scattering problems in 2D and 3D geometries.

Acknowledgement. This work is supported by Swiss Na-
tional Science Foundation under Project 200021−119813/1.

References

1. P. Bharadwaj B. Deutsch and L. Novotny. Optical anten-
nas. Adv. Opt. Photon., 1(3):438–483, 2009.

2. Ch. Hafner. Generalized multipole technique for com-
putational electromagnetics. Artech House Antenna li-
brary. Artech House, Boston, MA, 1990.

3. N. Kinayman and M. I. Aksun. Modern Microwave Cir-
cuits. Artech House, 2005.

4. K. A. Michalski. Extrapolation methods for sommerfeld
integral tails. Antennas and Propagation, IEEE Trans-
actions on, 46(10):1405–1418, Oct 1998.

5. A. Alparslan and Ch. Hafner. Using layered geometry
green’s functions in the multiple multipole program. J.
Comput. Theor. Nanosci., 8(8):1600–1608, Aug. 2011.

36 SCEE2012

pfister
Cross-Out



pfister
Rectangle



Stochastic Spectral Methods for Uncertainty Propagation in Numerical
Models

Olivier P. Le Maı̂tre1
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Summary. This talk reviews the stochastic spectral meth-
ods for the propagation of parametric uncertainties in a nu-
merical model. The alternative non-intrusive and Galerkin
methods for the definition of the spectral expansion of an
uncertain model output are introduced, and associated com-
putational strategies are discussed. Examples are shown to
highlight the interest of these methods and recent develop-
ments.

1 Content

The constant development of numerical methods and
computational resources allow the simulation of more
and more complex systems with ever increasing ac-
curacy. As a result, numerical simulations are to-
day widely used, in both academia and industry, to
study phenomena and systems that would be hardly,
or costly, investigated by means of experimental ap-
proaches. However, modeling improvements often raise
the necessity to provide a more complete and accurate
information regarding the input-data of the simulation
(boundary and initial conditions, geometry, external
forcing, material properties, model constants, . . . ). In
many situations, the information needed is unfortu-
nately subjected to uncertainty, either because of an
inherent variability of the system studied or due to is-
sues in identifying the values of the parameters in-
volved in the model. Therefore, it is critical to assess
the impact of such model input uncertainties on the
numerical predictions.

Classically, the propagation of uncertainties in a
numerical model is treated in a probabilistic frame-
work, where the input-data are regarded as random
quantities with prescribed probability law, leading to
the problem of characterizing the random model out-
put or solution. This can be achieved for instance by
means of simulation approaches (e.g. Monte Carlo
methods), where one samples the input to generate
a sample set of output that serves subsequent analy-
sis (moments estimation, reconstruction of probabil-
ity density functions, sensitivity analysis, . . . ). Such
approaches are robust and present the advantage of
reusing deterministic simulation tools, but they can
be computationally very expensive when the resolu-
tion of the model is costly.

In this talk, I will review stochastic spectral meth-
ods [1], where the uncertain model solution is seen

as a functional of the random input. Owing to the in-
troduction of a suitable functional basis spanning the
random input space, the objective is then to approxi-
mate the model output as convergent Fourier-like se-
ries. Compared to the simulation approaches, stochas-
tic spectral methods aim at exploiting the (usually)
smooth dependence of the model solution with re-
spect to the input, in order to reduce the computa-
tional complexity (spectral convergence rate), while
the functional representation greatly facilitate the anal-
ysis of the solution’s variance to separate for instance
the respective impact of different source of uncer-
tainty. The determination of the series amounts to the
computation of a set of deterministic coefficients rep-
resenting the coordinates of the random solution in
the stochastic basis. Two classes of methods can be
used for the computation of these coefficients. Non-
intrusive (NI) methods use a sample set of determinis-
tic simulations to compute the coefficients, by solving
a problem that depends on the selected definition of
the sought approximation (projection, interpolation,
least square residual or Bayesian inference). Alterna-
tive to the NI methods, the stochastic Galerkin meth-
ods uses the random model equations to reformulate
a problem for the series coefficients of its solution,
with possibly the need for a significant adaptation of
the solvers.

Examples of applications will be shown, for linear
and nonlinear models, highlighting recent advances in
stochastic spectral methods (in particular reduced ba-
sis methods and stochastic adaptivity) which aim at
improving computational efficiency.

Acknowledgement. This work is supported by the French
National Research Agency (ANR), grant ANR-2010-Blan-
0904.
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Summary. Most analyses of circuit equations start with
solving the steady-state (DC) solution. In several cases this
can be very hard. We present a novel time domain source
stepping procedure to obtain a DC solution of circuit equa-
tions. The source stepping procedure is automatically adap-
tive. Controlled sources can be elegantly dealt with. The
method can easily be combined with existing pseudo-transient
procedures. The method is robust and efficient.

1 Introduction

The circuit equations can be written as [5, 10]

d
dt

q(x)+ j(x)+ s(t,x) = 0 (1)

Here s(t,x) represents the specifications of the sources.
The unknown x = x(t) consists of nodal voltages and
of currents through voltage defined elements. We as-
sume that q(0) = 0, and j(0) = 0.
The steady state solution, which is called DC-solution
(Direct Current solution), xDC, satisfies

j(xDC)+ s(0,xDC) = 0. (2)

Usually, and already hinted by setting t = 0 in (2), the
DC-solution provides the initial value for the transient
problem (1). In general, the problem (2) is non-linear.
How to solve this problem is the subject of this note.
The importance of the DC-problem lies in the fact that
the DC-solution is crucial as starting solution for a
number of next analyses (transient analysis, AC anal-
ysis, Harmonic Balance analysis, Periodic Steady-
State analysis). In general, (1) forms a system of
Differential-Algebraic Equations (DAEs). With C =
∂q(x)

∂x
x=xDC

and G = ∂ j(x)
∂x

x=xDC

. We assume that λC +

G is non-singular for λ in some neighbourhood of
0 (may be excluding λ = 0). To solve the equations
Newton’s method, or variants, may be applied [3,5,8],
which can be combined with gmin-stepping, in which
linear conductors g are placed parallel to the non-
linear part inside each transistor (device). Iteratively
g ↓ gmin, after which the Newton counter is increased.

Another approach is Pseudo-Transient [2]. In Pseudo-
Transient (PT) one can use relaxed tolerances for the
Newton process and for the time step control proce-
dure. Also this can be combined with gmin-stepping
during each time step. In PT one has to provide a non-
trivial initial solution. A new procedure is decribed
in the next section. Other methods are: temperature
stepping, source stepping (the sources are iteratively
increased to their final value), homotopy methods, or
optimization [1, 4, 7, 9–12].

2 Time-domain Source Stepping

Usually, in Source Stepping one introduces a param-
eter λ and considers the problem

j(x(λ ))+λ s(0,x(λ )) = 0. (3)

In this case it is assumed that for λ = 0 the problem
(3) is easily solved so that in the end the original prob-
lem is solved. The same parameter λ is applied to all
sources s in the circuit. In general, for each value of λ

a nonlinear problem has to be solved.
We introduce a time-domain variant (SSPT) that of-
fers an automatic continuation process, based on PT
and adapting the transient stepsize and the λ stepsize
at the same time.
We define a time t = T at which we want to have
solved the original DC-problem. We also introduce
a time Tα = αT (by default α = 0.5) at which or-
dinary PT will start simulation using the sources as in
the original DC-problem, i.e. using λ = 1 and where
PT integrates from Tα to T ′, where T ′ ≤ T is the
point where all transient effects have become negli-
gible (see also Fig. 1).
On the interval [0,Tα ], a special PT integration is
performed with the function λ (t) = t/Tα . Hence, at
each time step, also the actual applied source values
change. The interval [0,Tα ] is the switch-on interval,
the interval [Tα ,T ] is the interval to damp-out tran-
sient effects. On both intervals PT uses an automatic
time step determination procedure. On the interval
[Tα ,T ] an ordinary PT procedure is executed. Hence,
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if, at some time point, the Newton iterative process
does not converge, a re-integration will be done with a
smaller stepsize. Recursion in controlled sources asks

Fig. 1. On [0,Tα ] a time-dependent voltage source λ (t)E is
used where λ (t) = t/Tα . On [Tα ,T ] we have λ ≡ 1.

for a modification in (3). An expression for a con-
trolled voltage source E1(0,1) may look like

V (E1) = 5+4I(E1)+ [6V (R1)+7I(E2)+12]2 (4)

It is controlled by the controlling ”ev’s” (electrical
variables) I(E1), V (R1), and I(E2). We write the ex-
pression for the applied value V (E1) as

V (E1) = ψ(ev1,ev2, . . . ,evn) (5)

As value during the source stepping at time t on [0,Tα ]
we propose to take

V (E1) = ψ̃(ev1, . . . ,evn), where (6)
ψ̃(ev1, . . . ,evn) = ψ(ev1, . . . ,evn)+

(λ (t)−1)ψ(0, . . . ,0). (7)

Note that in (4), ψ(0, . . . ,0) = 149. This value has
to be calculated once. When in (4) E2 is a controlled
voltage source too, contributions to the Jacobian ma-
trix are calculated by ∂ψ̃

∂x = ∂ψ̃

∂evi

∂evi
∂x , which gives re-

cursion. Note that λ does not occur in the matrix.
Clearly, for λ = 0 the applied voltage is zero (assum-
ing starting from the zero solution, which implies that
all ev’s are zero), which makes the zero solution the
exact solution.When λ = 1 the original voltage ex-
pression is used. Since our equations (1) are DAEs
we remark that for all t the generated solution is con-
sistent for the problem at hand. Because of the switch-
on and the damp-out phase the process mimics a real
physical process.

3 Results

We tested the SSPT on a set of difficult problems
where parameters were swept (temperature, and statis-

tics). The SSPT was always convergent (without need-
ing gmin-iteration). It was 1-13 times faster than New-
ton-Raphson (that sometimes needed internal gmin-
iteration). Normal PT was less robust than SSPT.
Further improvements in the time-domain integra-
tions, after starting with a proper xDC, have been
tuned to fault analysis [6].
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Summary. We propose explicit local time-stepping (LTS)
schemes of high accuracy based either on classical or low-
storage Runge-Kutta schemes for time dependent Maxwell’s
equations. By using smaller time steps precisely where
smaller elements in the mesh are located, these methods
overcome the bottleneck caused by local mesh refinement
in explicit time integrators.

1 FE Discretizations of Maxwell’s
Equations

The evolution of a time-dependent electromagnetic
field E(x, t), H(x, t) propagating through a linear iso-
tropic medium is governed by Maxwell’s equations:

εEt = ∇×H−σE+ j, (1)
µHt = ∇×E. (2)

Here the coefficients µ , ε and σ denote the relative
magnetic permeability, the relative electric permittiv-
ity and the conductivity of the medium, respectively.
The source term j corresponds to the applied current
density.

We discretize (1)-(2) in space by using standard
edge finite elements (FE) with mass lumping [6] or a
discontinuous Galerkin (DG) FE discretization [4, 5],
while leaving time continuous. Either discretization
leads to a system of ordinary differential equations
with an essentially diagonal mass matrix. Thus, when
combined with explicit time integration, the resulting
fully discrete scheme of (1)-(2) will be truly explicit.

2 Runge-Kutta based LTS

Locally refined meshes impose severe stability con-
straints on explicit time-stepping methods for the nu-
merical solution of (1)-(2). Local time-stepping meth-
ods overcome that bottleneck by using smaller time-
steps precisely where the smallest elements in the
mesh are located. In [1, 2], explicit second-order LTS
integrators for transient wave motion were developed,
which are based on the standard leap-frog scheme.
In the absence of damping, i.e. σ = 0, these time-
stepping schemes, when combined with the modi-
fied equation approach, yield methods of arbitrarily

high (even) order. By blending the leap-frog and the
Crank-Nicolson methods, a second-order LTS scheme
was also derived there for (damped) electromagnetic
waves in conducting media, i.e. σ > 0, yet this ap-
proach cannot be readily extended beyond order two.
To achieve arbitrarily high accuracy in the presence
of damping, while remaining fully explicit, explicit
LTS methods for the scalar damped wave equation
based on Adams-Bashforth multi-step schemes were
derived in [3].

Here we propose explicit LTS methods of high
accuracy based either on explicit classical or low-
storage Runge-Kutta (RK) schemes. In contrast to
Adams-Bashforth methods, RK methods are one-step
methods; hence, they do not require a starting proce-
dure and easily accommodate adaptive time-step se-
lection. Although, RK methods do require several fur-
ther evaluations per time-step, that additional work is
compensated by a less stringent CFL stability restric-
tion.

Clearly, the idea of using different time-steps for
different components in the context of ordinary differ-
ential equations is not new [7]. However, RK methods
achieve higher accuracy not by extrapolating farther
from the (known) past but instead by including further
intermediate stages from the current time-step. Thus,
for the numerical solution of partial differential equa-
tions, the derivation of high-order local time-stepping
methods that are based on RK schemes, is generally
more difficult.

3 Numerical Experiments

To illustrate the versatility of our approach, we con-
sider the scalar damped wave equation

utt +σut −∇ · (c2
∇u) = f in Ω × (0,T ) , (3)

in a rectangular domain of size [0,2]× [0,1] with
two rectangular barriers inside forming a narrow gap.
Here f (x, t) is a (known) source term, whereas the
damping coefficient σ(x) ≥ 0 and the speed of prop-
agation c(x) > 0 are piecewise smooth. We use con-
tinuous P2 elements on a triangular mesh, which is
highly refined in the vicinity of the gap, as shown in
Fig. 1. For the time discretization, we choose an LTS
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Fig. 1. The initial triangular mesh (left); zoom on the “fine”
mesh indicated by the darker (green) triangles (right).

Fig. 2. The solution at times t =0.6 and 0.7.

method based on an explicit third-order low-storage
Runge-Kutta scheme. Since the typical mesh size in-
side the refined region is about p = 7 times smaller
than that in the surrounding coarser region, we take
p local time steps of size ∆τ = ∆ t/p for every time
step ∆ t. Thus, the numerical method is third-order ac-
curate both in space and time with respect to the L2-
norm. In Fig. 2, a Gaussian pulse initiates two plane
waves, which propagate horizontally in opposite di-
rections. As the right-moving wave impinges upon
the obstacle, a small fraction of the wave penetrates
the gap and generates multiple circular waves on both
sides of the obstacle, which further interact with the
wave field.
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Summary. A mesh scheme is developed to deal with 
curved boundaries of the geometry using quadrilateral 
elements for the Discontinuous Galerkin Method 
(DGM). To achieve this, we first generate the inner 
part of the mesh in a structured manner and connect it 
to the curved boundary with a so-called buffer layer. 
Elements in the buffer layer employ a high order 
mapping to fit the boundary. We demonstrate high 
order convergence rates with an electromagnetic 
problem in a cylindrical cavity. Furthermore, we show 
that the frequency spectrum, which is extracted from 
the time-domain signal is clean, i.e., no spurious modes 
are observed in any of the examples considered. 
 
1 Introduction 
 
The DGM is a high order numerical method. In 
order to maintain its high order accuracy in the 
presence of curved objects, boundaries (surfaces) 
of the geometries have to be described with high 
order accuracy as well. The study in [1] shows 
that meaningful high order accurate results can be 
obtained only if the curved boundaries are 
considered with high order geometric 
approximations. In [2] problems in a cylindrical 
cavity are solved by pushing the straight edges of 
elements onto the exact circular boundary.  

Both implementations [1, 2] employ 
triangular meshes for the DGM and achieve high 
order convergence. We propose an alternative 
mesh scheme based on Cartesian grids. It 
generates quadrilateral meshes in a simple 
process for both, exact geometries and objects 
represented by Non-Uniform Rational B-Splines 
(NURBS). The scheme enjoys many advantages 
due to the ability of applying tensor product bases 
within quadrilateral elements (see e.g. [3, 4]). 
 
2 Body-fitting mesh scheme 
 
We generate a set of buffer elements in the gap 
between the exact curved boundary and the 
interior structured mesh as demonstrated in Fig. 1. 
Figure 2 (left) shows that if no buffer layer is 
applied, degenerated elements (marked with 
arrows) are likely to occur , which is guaranteed 
not to happen with the insertion of a buffer layer 
[5] (right). Figure 3 gives an example, where a  

Fig. 1: Buffer layer mesh scheme based on a 3-by-3 
regular mesh. 

 

 
Fig. 2: Curved elements of 2nd order without (left) and 

with (right) buffer layer scheme based on a 9-by-9 
regular mesh. 

 

 
Fig. 3: Buffer layer mesh with NURBS. The 

approximation can be exact for both a circle (left half) 
and an arbitrary curve (right half) using control points. 

 
mesh is generated fitting a geometry described by 
NURBS. For performing the local element 
deformation in the buffer layer we apply 
Transfinite Interpolation (TFI) [6]. 
 
3 Solving electromagnetic problems 
 
We consider transverse magnetic (TM) problems 
in a two-dimensional circular domain Ω  with the 
boundary Ω∂ . The Maxwell’s equations read as 
follows: 
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where 
xH  and 

yH  are the x- and y-components of 
the magnetic field vector, and 

zE  the z-
component of the electric field vector. The 
parameters ε and μ are the electric permittivity 
and the magnetic permeability, respectively.  

In this DGM approach, Legendre polynomials 
are applied as basis functions and the explicit 
leap-frog scheme is used for the time 
discretization [4]. The TM31 mode in a 
cylindrical cavity is chosen for a convergence 
study. The errors are measured in the L2 norm at 
the end of one periodic oscillation.  

  

Fig. 4: For a resonant mode in the cylindrical cavity, 
DGM with upwind flux shows (p+1) convergence 

using body-fitting meshes. 

 

Fig. 5: Analytical values (red squares) and captured 
numerical eigen-modes (blue stems) 

Figure 4 shows that the optimal convergence 
of (p+1) is achieved where p is the polynomial 
order. We also extracted eigenfrequencies via a 
Fourier Transform. The results in Fig. 5 were 
obtained using central fluxes and 32 elements of 
6th order. The eigenfrequencies obtained from the 
time-domain solution agree with the analytical 
ones for frequencies up to 0.8 GHz. Above this 
frequency the spatial resolution is insufficient 
leading to errors. 
 
4 Conclusions 
 
A body-fitting mesh scheme employing high 
order curved elements with the DG method is 
proposed. High order convergence rates in the 
presence of curved objects are observed. 
Furthermore, we extracted frequency spectra 
from simulations of a cylindrical cavity and 
found the agreement between the numerical 
results and the respective analytical solutions, i.e., 
clean spectra are obtained. 
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Summary. Resolving thin conducting sheets for shielding
or even skin layers inside by the mesh of numerical meth-
ods like the finite element method (FEM) can be avoided
by using impedance transmission conditions (ITCs). Those
ITCs shall provide an accurate approximation for small
sheet thicknesses d, where the accuracy is best possible in-
dependent of the conductivity or the frequency being small
or large – this we will call robustness. We investigate the ac-
curacy and robustness of popular [1, 2] and recently devel-
oped ITCs [4], and propose robust ITCs which are accurate
up to O(d2).

1 Introduction

Thin conducting sheets for the protection of electronic
devices exhibit large ratios of characteristic lengths
which require a small mesh size when using finite dif-
ference or finite element schemes. Besides this issue
of computational cost due to the small geometry de-
tail, many commercial mesh generators get difficul-
ties with anisotropic geometrical features.

The shielding behaviour can be modelled alterna-
tively by replacing the thin sheet by an interface on
which impedance transmission conditions are set.

We consider the time-harmonic eddy current model
(convention exp(−iωt), ω > 0) in two dimensions

curl2D e(x) = iωµ0h(x), (1)
curl2D h(x) = σe(x)+ j0(x) (2)

where e and h are the out-of-plane electric and in-
plane magnetic fields, σ is the conductivity of the
thin sheet of thickness d and zero elsewhere, and j0
is the out-of-plane imposed current which is outside
the conductor. We have used the 2D rotation opera-
tors curl2D = (∂y,−∂x)

> and curl2D = (−∂y,∂x). The
skin depth inside the conductor is δ =

√
2/ωµ0σ .

d
n

n⊥
+++
−−−

Γ

Fig. 1. Impedance transmission conditions are set on the
mid-line Γ of the sheet and shall approximate the exact field
outside the area the sheet was originally located.

2 Thin sheet and limit conditions

2.1 Thin sheet transmission conditions

With β = iωµ0 and γ =
√
−iωµ0σ the impedance

transmission conditions by Krähenbühl and Muller [1]
and Mayergoyz and Bedrosian [2] are given by

e+KM− e−KM = β

γ
tanh( γd

2 )(h+
KM ·n+h−KM ·n),

h+
KM ·n

⊥−h−KM ·n
⊥ = γ

β
tanh( γd

2 )(e+KM + e−KM)

(3)

which are set on the mid-line Γ of the thin sheet. Here,
the subscript KM denotes the approximative electric
and magnetic field, the superscript ± denotes the val-
ues on the two sides of the sheet, and n = (n1,n2)

>

and n⊥ = (n2,−n1)
> are the normalised normal and

tangential vectors on Γ like shown in Fig. 1.

2.2 The limit of vanishing thickness

Impedance transmission conditions are developed for
thin sheets and their accuracy shall be larger the thin-
ner the sheet. We observe three different limits for
vanishing sheet thickness (d→ 0):

1. The conductivity σ is remained or is increased
less than 1/d. Then, we have twofold continuity

e+0 − e−0 = 0,

h+
0 ·n⊥ − h−0 ·n⊥ = 0.

(4)

The limit corresponds to the low-frequency eddy
current limit δ → ∞.

2. The conductivity σ increases like 1/d, where we
get the non-trivial limit conditions [3]

e+1 − e−1 = 0,

h+
1 ·n⊥ − h−1 ·n⊥ = σd

2 (e+1 + e−1 ).
(5)

3. The conductivity σ increases more than 1/d, e. g.,
like 1/d2. Then, the electric field on both sides
get zero in the limit d→ 0,

e+2 = e−2 = 0, (6)

equivalently to the high-frequency limit δ → 0.

Here, the respective subscripts 0, 1 and 2 correspond
to the scaling σ ∼ 1/dα with α = 0,1,2.
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(a) Low-frequency limit.
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Fig. 2. The modelling error when using (a) the low-frequency limit, (b) the high-frequency limit, (c) the non-trivial limit, and
(d) the thin sheet conditions (3) to approximate the shielding of conducting sheets of different thicknesses d and different
frequencies or skin depth δ . The shown error is the one of the magnetic field outside the thin sheet.

2.3 Discussion

We investigated the thin sheet conditions and the limit
conditions with high-order finite elements for a straight
thin sheet in a rectangular box (with periodic bound-
ary conditions) and two circular live wires with op-
posite current direction. The original thin sheet con-
ditions (3) turn out to be robust with respect to the
skin depth or frequency, see Fig. 2(d), which is obvi-
ous as they transform into (4) for low frequencies and
into (6) for high frequencies, cf. [1].

The low-frequency limit conditions (4) achieve
only some accuracy if the sheet thickness is more than
one or two orders smaller than the skin depth. The
high-frequency limit conditions (6) entail some accu-
racy if the skin depth is at least at the order of the
sheet thickness.

The non-trivial limit conditions (5) are again ro-
bust and their accuracy is comparable to the one of the
original thin sheet conditions for large skin depths /
thickness ratios and much better if the skin depth gets
relatively small, see Fig. 2(c). This obvervation is re-
markable as the expression of (5) is much simpler
than the one of (3).

3 High order transmission conditions

In order to improve the accuracy we have studied an
asymptotic expansion for d→ 0 where – motivated by
the non-trivial limit conditions – the conductivity is
once scaled like 1/d (case α = 1) and – motivated by
asymptotically constant skin depth – the conductivity
is once scaled like 1/d2 (case α = 2).

3.1 Conductivity scaled like 1/d

The first order ITCs related to α = 1 are given by [4]

e+1,1 − e−1,1 = 0,

h+
1,1 ·n⊥ − h−1,1 ·n⊥ = σd

2 (1+ 1
6 iωµ0σd2)(e+1,1 + e−1,1).

The second and third ITCs involve curvature terms
and second order tangential derivatives, see [4].

3.2 Conductivity scaled like 1/d2

The first order ITCs related to α = 2 are given by

e+2,1 − e−2,1 = βd
2

(
1− tanh(

γd
2 )

γd
2

)
(h+

2,1 ·n+h−2,1 ·n),

h+
2,1 ·n⊥ − h−2,1 ·n⊥ = γ

β

sinh(
γd
2 )

cosh(
γd
2 )− γd

2 sinh(
γd
2 )

(e+2,1 + e−2,1).

Additional terms will be present for curved sheets.

3.3 Discussion

Both proposed ITCs are robust and get improved ac-
curacy in comparison to the non-trivial limit and the
original thin sheet conditions. The accuracy for both
ITCs is asymptotically like O(d2). Especially, the
α = 2-ITCs achieve accurate results even for larger
sheet thicknesses. Since their expression has the same
form as the original thin sheet conditions (3) they are
preferable – for low and for high frequencies.

10−3 10−2 10−1

10−3

10−2

10−1

Sheet thickness d

Sk
in

de
pt

h
δ

(a) Order 1 α = 1.

10−3 10−2 10−1

Sheet thickness d

(b) Order 1 α = 2.

Fig. 3. Error of the impedance models of order 1 derived by
asymptotic expansion for the scaling σ ∼ 1/dα , α = 0,1.
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Efficient Convolution Based Impedance Boundary Conditions
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Summary. When formulating impedance boundary con-
ditions in time domain, the Dirichlet-to-Neumann map of
the interior of a good conductor involves convolutions. A.
Schädle, M. López-Fernández and C. Lubich have devel-
oped a fast and memory efficient algorithm based on Runge-
Kutta methods for computing convolutions when only the
Laplace transform of the kernel is known. We investigate
the coupling of FCQ with FEM for solving parabolic PDE
with impedance boundary conditions involving convolu-
tions.

1 Introduction

Alternating electromagnetic fields decay exponentially
when penetrating a good conductor (skin effect). There-
fore, a reasonable approximation of the electromag-
netic Dirichlet-to-Neumann map of the interior of a
good conductor is provided by the impedance bound-
ary conditions(

curlL(E)(s)
)
×n =

√
2µσs

(1− i)
√

i
γDL(E)(s), (1)

where L(E)(s) denotes the temporal Laplace trans-
form of the electric field, s is a complex variable and
γD is the tangential Dirichlet trace operator. The con-
ductivity σ and permeability µ are known material
parameters.

The relationship (1) is valid in the Laplace domain
only. When formulating impedance boundary condi-
tions in the time domain, we encounter temporal con-
volutions of the form

curl E(x, t)×n =
∫ t

t0
k(µ,σ ,τ− t)γDE(x,τ)dτ. (2)

2 Fast Convolution Quadrature

C. Lubich and A. Ostermann first introduced the Runge-
Kutta convolution quadrature in [1]. Their algorithm
requires only the knowledge of the Laplace transform
K of the possibly weakly singular kernel and experi-
ences excellent stability properties and high order of
convergence.

Subsequently in [2] A. Schädle, M. López-Fernández
and C. Lubich rearranged the computations and com-
bined the convolution quadrature with the exponen-
tially convergent approximation of the convolution

weights along hyperbolae. They obtained a fast and
memory efficient algorithm which virtually shares the
convergence and stability properties of the convolu-
tion quadrature. Table 1 compares the complexity of
a naive implementation of the convolution quadrature
with the reduced complexity of the FCQ.

Table 1. Complexity of Convolution Quadrature and FCQ,
n indicates the number of timesteps.

CQ FCQ

multiplications O(n2) O(nlogn)
evaluations of K O(n) O(logn)
active memory O(n) O(logn)

3 FEM-FCQ Coupling

We have investigated the coupling of the FEM and
the FCQ for solving the exterior eddy current prob-
lem. The algorithm benefits from the computational
efficiency of the FCQ and seems to inherit the good
convergence and stability properties which both the
FEM and the FCQ supply.

For example we have combined the linear Lagrangian
FEM on a triangular mesh with nodal basis functions
with the RadauIIA based FCQ for solving the eddy
current problem, after assuming a translation symme-
try of the model and the TE-mode. We have observed
that both the maximal order of convergence in space
of FEM an the maximal order of convergence in time
of FCQ have been achieved.
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Summary. Streamers occur prior to breakdown in electri-
cal insulation and understanding streamers is important in
order to optimize insulation design. In earlier works a model
that describes streamers in transformer oil has been devel-
oped and implemented in a finite element simulation tool. In
this paper the consequences of changing simulation method
to the finite volume method is investigated and the simula-
tion is extended from 2D axial symmetry to 3D.

1 Introduction

When electricity is transmitted over large distances
in a power grid high voltages are required to limit the
ohmic losses. High voltage puts a number of demands
on electrical equipment in particular the electric in-
sulation. For power transformers the insulation sys-
tems usually consists of mineral oil and high density
cellulose. The primary mode of failure is an electric
arc though the oil, which normally destroys the trans-
former.

Before an electric arc is formed a pre-breakdown
event called a streamer occurs. The streamer is an ion-
izing wave traveling rapidly through the oil. The wave
starts when the oil gets highly stress causing exces-
sive build up of charge, which in turn affects the elec-
tric field leading to a high electric field region nearby.
The strong electric field causes additional ionization
and the wave propagates.

2 The Streamer Model

Researchers at Massachusetts Institute of Technology
(MIT) have together with ABB Corporate Research
developed a model for describing streamers in trans-
former oil [2–5]. The model consists of ion and elec-
tron transport equations coupled with Poisson’s equa-
tion. The ions and electrons are produced through a
field dependent ionization term based on the Zener
model for electron tunneling.

3 Numerical Methods

The streamer simulations at MIT have been done us-
ing Comsol Multiphysics, which is a computational

tool based on the finite element method (FEM). Al-
though Comsol is a powerful tool with a large number
of applications, it has its limitations when computing
convectively dominated flow, which is the main part
of the streamer model. To be able to run the simula-
tion various artificial diffusion techniques needs to be
applied to stabilize the solutions.

A preferred method for convection dominated prob-
lems is the finite volume method (FVM). When im-
plementing the MIT model in FVM OpenFOAM was
chosen due to its flexibility and open structure. Mov-
ing to FVM also make the simulations more efficient,
which allows larger problems to be treated.

4 Results

The MIT model was implemented in OpenFOAM at
ABB and has been tested as part of the master the-
sis by Jonathan Fors [1]. The geometry simulated is
a needle-sphere geometry, which is a standard geom-
etry for testing the breakdown strength of insulating
liquids.

The new solver is checked against a selection
of MIT results [2]. These test cases are all 2D ax-
isymmetric and include different model parameters
and voltages. Most cases give quite similar results,
but some differences are seen which are attributed to
more stable numerics in the OpenFOAM solver.

The new solver has also been applied to a 3D ver-
sion of the same needle-sphere geometry. The heavy
computational load means that techniques for efficient
meshing need to be used.
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Summary. Oscillators have been a research focus in many
disciplines such as electronics and biology. The time keep-
ing capability of oscillators is best described by the scalar
quantity called phase. Phase computations and equations
describing phase dynamics have been useful in understand-
ing oscillator behavior and designing oscillators least af-
fected by disturbances such as noise. In this talk, we present
a unified review of phase models for oscillators assimilating
the work that has been done in electronics and biology for
the last seven decades.

Oscillatory behavior is seen in physical and man-
made systems, where their time keeping ability is
important. Oscillators are particularly encountered in
or introduced into biological and electronic systems
where the adverse effects of disturbances such as
noise degrade their time keeping and synchronization
capability.

The dynamical behavior of oscillators is best de-
scribed and analyzed in terms of the scalar quan-
tity, phase. Of the pertaining notions in the literature,
the most straightforward phase definition is obtained
when a planar oscillator is expressed in polar coordi-
nates, with amplitude and polar angle as the state vari-
ables. The usefulness of the polar angle as phase does
not generalize to higher dimensional oscillators. In
the general case, it is our conviction that the most rig-
orous and precise definition of phase is the one based
on the so-called isochrons of an oscillator [1–4]. The
notion of isochrons was first proposed by Arthur Win-
free [1, 3] in 1974, who has also coined the term. It
was later revealed that isochrons are intimately re-
lated to the notion of asymptotic phase in the theory
of differential equations [5,6]. The isochron theoretic
phase of a free-running oscillator is simply time it-
self. Such an unperturbed oscillator serves as a per-
fect time keeper if it is in the process of converging
to a limit cycle, even when it has not yet settled to a
periodic steady-state solution. Perturbations make the
actual phase deviate from time, due to the degrading
impact of disturbances on the time keeping ability.

Phase is a quantity that compactly describes the
dynamical behavior of an oscillator. One is then in-
terested in computing the phase of a perturbed oscil-
lator. If this can be done in a semi or fully analytical
manner for a practical oscillator, one can draw conclu-
sions and obtain useful characterizations in assessing

the time keeping performance. Indeed, we observe in
the literature that, in various disciplines, researchers
have derived phase equations that compactly describe
the dynamics of weakly perturbed oscillators [2,7]. It
appears that a phase equation for oscillators has first
been derived by Malkin [8] in his work on the re-
duction of weakly perturbed oscillators to their phase
models [2], and the same equation has been subse-
quently reinvented by various other researchers in
several disciplines [1, 7, 9]. This phase equation has
been used in mathematical biology to study circadian
rhythms and coupled oscillators in models of neuro-
logical systems [1, 2, 10], and in electronics for the
analysis of phase noise and timing jitter in oscilla-
tors [7,11,12]. The acclaimed phase equation is a non-
linear but scalar differential equation. As such, it is
the ultimate reduced-order model for a complex non-
linear dynamical system. Its scalar nature and the spe-
cific form of the nonlinearity in this equation makes it
possible in some cases to solve, or characterize the so-
lutions of, this equation in (semi) analytical form, e.g.,
in the investigation of synchronization of coupled os-
cillators [2, 9] and in characterizing phase noise in
electronic oscillators with stochastic perturbations as
models of electronic noise sources [7, 13].

In this talk, we present a unified review of phase
models for autonomous oscillators assimilating the
work that has been done on oscillator analysis in both
electronics and mathematical biology during the past
seventy years. We first review the notion of isochrons,
which forms the basis for the generalized phase no-
tion for an oscillator. We then present an overview
of techniques for computing local approximations for
the isochrons of an oscillator [4, 14]. Next, we de-
scribe phase models and phase computation schemes
based on local approximations of isochrons, for con-
tinuous periodic (single-frequency) oscillators [15],
continuous quasi-periodic (multi-frequency) oscilla-
tors [16], as well as for discrete molecular oscilla-
tors [17, 18].
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Summary. We present a new approach for the computa-
tion of a not a-priori known, time-varying frequencies in a
multi-rate circuit simulation. Typical examples are the start-
up simulation of oscillators, or circuits with frequency mod-
ulation. The method is based on the optimization of the
smoothness of the multi-rate solution, which is in turn es-
sential for the efficiency of the computation.

1 Introduction

Widely separated time-scales occur in many radio-
frequency (RF) circuits such as mixers, oscillators,
PLLs, etc., making the analysis with standard numer-
ical methods difficult and costly. Low frequency or
baseband signals and high frequency carrier signals
often occur in the same circuit, enforcing very small
time-steps over a long time-period for the the numer-
ical solution, which results in prohibitively long run-
times.

A method to circumvent this bottleneck is to refor-
mulate the ordinary circuit DAEs as a system of par-
tial DAEs (multi-rate PDAE). The method was first
presented in [5] for the computation of steady states.
The technique was adapted to the transient simula-
tion of driven circuits with a-priori known frequen-
cies in [7,9]. A generalization for circuits with a-priori
unknown or time-varying frequencies was developed
in [3, 4, 6].

Here, we present a new approach for the computa-
tion of a not a-priori known, time-varying frequency,
which is driven by the requirement to have a smooth
multi-rate solution, crucial for the efficiency of the
computation.

2 The multi-rate circuit simulation
problem

We consider circuit equations in the charge/flux ori-
ented modified nodal analysis (MNA) formulation,
which yields a mathematical model in the form of a
system of differential-algebraic equations (DAEs):

d
dt q
(
x(t)
)
+g
(
x(t)
)

= s(t). (1)

To separate different time scales the problem is refor-
mulated as a multi-rate PDAE, i.e.,

(
∂

∂τ
+ω(τ) ∂

∂ t

)
q
(
x̂(τ, t)

)
+g
(
x̂(τ, t)

)
= ŝ
(
τ, t
)
. (2)

If the new source term is chosen, such that sθ (t) =
ŝ
(
t,Ωθ (t)

)
, where Ωθ (t) = θ +

∫ t
0 ω(s)ds, then a so-

lution x̂ of (2) determines a family {xθ : θ ∈ R} of
solutions for

d
dt q
(
x(t)
)
+g
(
x(t)
)

= sθ (t), (3)

by xθ (t) = x̂
(
t,Ωθ (t)

)
.

Although the formulation (2) is valid for any cir-
cuit, it offers a more efficient solution only for certain
types of problems. This is the case if x̂(τ, t) is peri-
odic in t and smooth with respect to τ . In the sequel
we will consider (2) with periodicity conditions in t,
i.e., x̂(τ, t) = x̂(τ, t +P) and suitable initial conditions
x̂(0, t) = X0(t). Here P is an arbitrary but fixed period
length.

3 Meaning and suitable choice of ω(τ)

Note that ω(τ) can, with a corresponding choice of
ŝ(τ, t), be chosen arbitrarily. This freedom may be
used to facilitate an efficient numerical solution of
(2). The smoothness of x̂(τ, t) is essential for the effi-
ciency of classical solvers. Therefore, we require∫

τ2

τ1

∫ P

0

∣∣∣ ∂

∂τ
x̂(τ, t)

∣∣∣2 dt dτ →min . (4)

in order to determine ω(τ). For frequency modu-
lated oscillations one obtains indeed the instantaneous
frequency as ω(t)

P , while x̂(τ, t) is constant with re-
spect to τ . For some examples a (nearly) optimal ω(t)
might be known in advance, while in other case (e.g.
start-up of an oscillator) it might be necessary to de-
termine ω(t) during the simulation, by enforcing the
smoothness condition (4).

4 Discretization

We discretize (2) with respect to τ by a Rothe method
using a linear multi step method (e.g. Gear’s BDF or
the trapezoidal rule). This results in a periodic bound-
ary value problem in t of the form
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2

ωk
d
dt qk

(
Xk(t))+ fk(Xk, t) = 0, (5)
Xk(t) =Xk(t +P),

where Xk(t) is the approximation of x̂(τk, t) for the
k-th time step τk, while ωk is an approximation of
ω(τk). An optimal ωk is determined with the condi-
tion ∫ P

0

∣∣Xk(t)−Xk−1(t)
∣∣2 dt→min, (6)

which is a good approximation of condition (4).
The periodic problem (5) can be solved by a col-

location or Galerkin method, where Xk(t) is expanded
in a periodic basis {φk} (as a Fourier, B-spline, or
wavelet basis) and tested at collocation points or inte-
grated against test functions, respectively. This leads
to a nonlinear system of equations for the coefficients
ck,` of the basis expansion Xk(t) = ∑` ck,` φ`(t). Here,
the condition (6) is replaced by the condition

∑
`

‖ck,`− ck−1,`

∥∥2
2→min . (7)

5 Example: A Phase Locked Loop

The method has been tested our method on several
circuits. To solve the periodic problem we have used
an adaptive spline wavelet method described in [1,2].
We show results from the multi-rate simulation of a
Phase Locked Loop (PLL) with a frequency modu-
lated input signal. Both the frequency parameter ω(τ)
(Fig. 1) determined by our method, and the control
signal of the oscillator (Fig. 2) reflect perfectly the in-
stantaneous frequency. The feedback signal in Fig. 3
shows that the computed ω(τ) leads indeed to optimal
smoothness.

0 5 10 15 20 25 30

0.998

0.999

1

1.001
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τ / ms

ω
(τ

)

Fig. 1. Plot of simulated ω(τ).
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Polynomial Fitting of Nonlinear Sources with Correlating Inputs

Janne P. Aikio1, Timo Rahkonen1, Ville Karanko2

1 Department of Electrical Engineering, Electronics Laboratory, P.O. Box 4500 90014 University of Oulu, Finland
2 AWR-APLAC Corporation, Lars Sonckin kaari 10, FI-02600 Espoo, Finland.

Summary. This paper proposes methods to improve the
LSE polynomial fitting of bivariate nonlinear VCCS
sources for distortion contribution analysis. The main
problem in fitting is usually the fact that the input signals
correlate strongly. It is shown that the correlation can be
reduced by perturbing the input signals, which highly im-
proves the quality of the fit. The ways to recognize a bad
fit are discussed and the comparison between general,
Chebychev and perturbed polynomial is performed. 

1 Introduction
Volterra analysis is a powerful tool for finding

the contributions of nonlinear distortion [1],[2].
However, it relies on the use of polynomial models
that are usually not available. Volterra models are
mostly built using high-order derivatives of the I-V
and Q-V functions, but a polynomial model fitted
using existing DC or AC I-V data is certain to con-
verge over the data range. However, the fitting suf-
fers from ill-conditioning resulting in non-physical
coefficients. This paper illustrates heuristic meth-
ods how to recognise a bad fit, and ways to prevent
it. We will propose a method that guarantees a
physically meaningful fitted polynomial models
are that converge over a the required signal range.

Here we utilize the frequency domain polyno-
mial fitting [3] using large-signal voltage and cur-
rent spectra of each nonlinear VCCS obtained from
HB simulation. Hence, we can monitor the quality
of the fitting of each VCCS individually and im-
prove the fitting of those sources that suffer from a
bad fit. The IDS-VGS-VDS current source of a MOS
transistor [4] is used as an example. Its frequency
domain polynomial can be written as 

, (1)

where Vij(f) means the spectrum of a product term
vGS

ivDS
j - e.g. V30(f) are obtained by convolving

V10(f) twice with itself. Controlling voltages VGS
and VDS often correlate rather strongly, and this
easily causes excessively strong VDS-related prod-
uct terms in the polynomial on lines 3 and 4 in (1).

2 Ways to Recognize a Bad Fit
The LSE fitting [5] tries to match the output

current spectrum as accurately as possible, which is
relatively easy to achieve. However, the model
may still show excessive curvature outside the data
range and does not make sense physically. In order
to monitor the quality of the fit, we can calculate
the estimated variance for fitted parameters [5].
This easily calculated numerical measure shows if
the result is uncertain and has a risk. The condition
number cond calculated from the singular values of
the model matrix M in yest = Mc, c = (M’M)-1(M’y)
gives similar indication [5]. If cond(M) is high, the
model functions in M most probably correlate. Vi-
sually the quality of the fit can be illustrated by the
model’s capability to imitate the I-V shape of the
original transistor. In Fig. 1 the I-V-curves of the
original model are plotted on top of a narrow IDS-
VDS swing (black) caused by the strongly correlat-
ing VGS and VDS. The general frequency domain
polynomial (thick line) that is fitted using the nar-
row data range show excessive curvature outside
the data trajectory, which implies that the model -
though accurate - is non-physical. 

3 Methods to Improve the Fitting
Several approaches have been proposed to

guarantee that the fitted polynomial is physically
meaningful. One is to reduce the order of the model
(especially of VDS-related terms). This helps, but
also limits the usability of the model in highly non-
linear applications. Another method is to apply or-
thogonal series expansion like Chebychev series to
reduce the correlation between odd and even de-
gree terms. This works rather well with a multitone
spectra, too: if the DC content is eliminated in the
signals to be multiplied, the original frequency
components will be attenuated in the resulting
higher-order spectrum. The effect of this is shown
in Fig. 2, in which the increase of cond(M) between
different order spectra Vij(f) is shown. It can be
seen that condition number of the terms in Cheby-
chev polynomial is indeed lower up to V50 but then
increases above the general polynomial. In fact, a
Chebychev polynomial can not break the correla-

IDS f( ) K= 00 K10 V10 f( )⋅ K20 V20 f( )⋅++

K+ 30 V30 f( )⋅ K40 V40 f( ) K50 V50 f( )⋅+⋅+

K01 V01 f( )⋅ K02 V02 f( ) K03 V03 f( )⋅+⋅+ +

K11 V11 f( ) K21 V21 f( ) K12 V12 f( )⋅+⋅+⋅+
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tion between VGS and VDS, which is the main prob-
lem in the 2-D fitting. By fitting the VGS and VDS
related polynomial terms in two phases (VGS first,
then VDS), helps a little. One could also use the par-
tial derivatives of IDS to aid the fitting, as is often
done in fitting DC models. However, that does not
break the VGS-VDS correlation, either.

The obvious solution in breaking VGS-VDS
correlation is to perturb either one of them [6]. This
means that the data used for fitting is different from
the one used for distortion contribution analysis,
and we need to maintain the same peak amplitudes
of the control signals. Also, two simulations are
needed: one for fitting the models, and one for the
real signals for the contribution analysis. This is
implemented so that only the hard-to-fit I-V or Q-
V sources are recognized, and fitted in a separate
HB simulation loop where only that specific source
is simulated and refitted. It can be seen in Fig. 2
that when a half the amplitude of the f1 tone (900
mV 45o) is added to the f2-f1 of VDS, the cond(M)
(especially cross-products) are highly reduced. 

Fig. 1  IDS - VDS voltage swings with IV curves.

The IV-curves of this polynomial can be seen
in Fig. 1 (X marker) and it behaves surprisingly
well. The perturbation causes now wider data tra-
jectory (grey) indicating lower correlation between
VGS and VDS. With less correlating data it is possi-
ble to fit a frequency domain polynomial that is ac-
curate and able to imitate the shape of the actual
IV-curves. In fact, this polynomial is more accurate

than the IV-fitted polynomial(  marker) based on
the actual DC curves. 

To observe the results further the Table 1
shows the coefficients of three different frequency
domain polynomials and their reliability. The high-
er the reliability figure the smaller the deviation. It
can be seen that the perturbation definitely increas-
es the reliability of all terms, especially in the high-
er order terms and cross products.

Fig. 2  Increase of the cond(M) term by term. 
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 Table 1: Coefficients and the reliability of general (C_1), Chebychev (C_2) and perturbed (C_3) polynomial. 
Terms DC V10 V20 V30 V40 V50 V01 V02 V03 V11 V21 V12
C_1 0.33 1.29 1.78 0.35 -0.98 -0.25 2.3m 160u 20u 10.8m 8.9m 290u

C_1/sigma1 6310 2080 166 13 155 77 33 1.1 0.4 4.3 0.9 0.2
C_2 0.870 1.32 0.80 72.6m -0.12 -15m 2.5m 80u 10u 10.8m 8.8m 290u

C_2/Sigma2 319 380 148 10.5 154 77 4.5 1.1 0.4 4.3 0.9 0.2
C_3 0.33 1.29 1.78 0.39 -0.99 -0.24 2.3m 140u 10u 10.5m 17m 640u

C_3/Sigma3 7640 3650 1300 97 174 140 60 18.6 2.8 82.4 17.4 6.9
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Summary. This paper is concerned with electron transport
and heat generation in nanometric silicon semiconductor
devices. An improved Monte Carlo method has been used,
with the aim to reduce statistical fluctuations. Simulation
results are presented for a 2D MOSFET device.

1 Introduction

In nano-devices the presence of very high and rapidly
varying electric fields is the cause of thermal heating
of the carriers and the crystal lattice. In fact, the ex-
ternal electric field transfers energy to the electrons
and in turn to the lattice through the scattering mech-
anism. This self-heating process can influence sig-
nificantly the electrical behaviour because the dissi-
pated electrical energy causes a temperature rise in
the device resulting in increased power dissipation.
Power dissipation limits the performance of electron-
ics from handheld devices (≃103 W) to massive data
centers (≃109 W), all primarily based on silicon mi-
cro/nanotechnology [2].

In a diffusion-like regime, where the charge car-
riers are in thermal equilibrium with the lattice, there
are small temperature gradients, and the device length
is much larger than the phonon mean free path, the
electro-thermal transport can be described accurately
using the non isothermal drift-diffusion model [9].
Here the classical drift-diffusion equations are cou-
pled with the Fourier law via the heat generation rate
term

HD = J ·E+(R−G)(EG +3kBT ) (1)

where the cross product of the electric field (E) and
the current density (J) represents the Joule heating,
and the second term represents the heating rate due
to the generation-recombination processes. But this
field-dependent method does not give accurate for
nanometric devices, where the regime is ballistic [2].
The mechanism through which lattice self-heating oc-
curs is that of electron scattering with phonons, and
therefore a model which deliberately incorporates all
scattering events will also capture such energy dis-
sipation details. The Monte Carlo method originally
developed for studying hot electron effects, is also
well-suited for computing a detailed picture of energy
dissipation. In this case, the distribution of the heat
generation rate is determined by counting the num-
ber of phonon emission and absorption events that re-

sult from electron-phonon scattering processes within
the simulated region [3–5,8]. Thiscounting estimator
writes

〈

HC〉

(x,y) =
n

Np∆ t ∑
j

h̄ω j

[

C+
j −C−

j

]

(2)

wheren is the electron density,Np is the particle num-
ber in the (x,y)-cell,∆ t is time interval in which the
counting is made,̄hω j the energy of the exchanged
phonon, andC+

j ,C−

j are the numbers of the j-th phonon
emitted and absorbed respectively.

This counting method is a more fundamental ap-
proach, as it calculates power dissipation directly from
the number of phonon emissions and absorptions.
Furthermore, the method allows the investigation of
the relative contribution of different phonon types to
heat dissipation, which is not possible with most other
methods. The main drawback of this method is the
computational effort, because the estimator (2) is very
noisy. In a recent paper [1], we have proposed a new
estimator for the heat generation rate, which is based
on the integrated probability scattering for the i-th
phonon, i.e.

λ±

i (ε,TL) =
∫

wi(k,k′
,TL)dk′ (3)

whereε the electron energy,TL is the lattice temper-
ature,wi is the electron-phonon scattering rate,and +
means emission of a phonon whereas - absorption of
a phonon. Theintegrated probability estimator is

〈

HF〉

(x) =
n

Np

Np

∑
i=1

G(ε(ki)) (4)

where

G(ε) = ∑
j

h̄ω j

[

λ+
j (ε)−λ−

j (ε)
]

. (5)

2 Simulation results

A npn silicon MOSFET is simulated via the Monte
Carlo method to provide the heat generation rate. The
MOSFET domain is 480 x 240 nm (see [6] for geo-
metric details). The source/drain regions have a uni-
form n-type doping of 1018cm−3, the substrate a uni-
form p-type doping of 1014cm−3, and the gate oxide
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is 40 nm thick witha gate length of 160 nm. The bias
voltages applied areVs=0, Vg = 0.4 V, Vd = 1 V. We
have considered quasi-parabolic band approximation,
scattering with acoustic phonons (in the elastic ap-
proximation) and optical phonons. The Monte Carlo
device simulation is marched at a time step of 0.2 fs to
steady state with 200,000 particles considered in the
simulation. Once steady state is reached, statistics of
electron-phonon scattering are collected over a time
period of 5 ps. The results obtained by the integrated
probability estimator (4) shown in the figure 1, have
significantly lower fluctuations compared to those ob-
tained by the counting estimator (2), plotted in the fig-
ure 2. Consequently a more efficient evaluation of the
heat generation rate can be achieved using the new
estimator (4). Moreover, the heat generation rate can
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Fig. 1. Heat generation rate in the device obtained with the
integrated probability estimator (4).
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Fig. 2. Heat generation rate in the device obtained with the
counting estimator (2).

be used toevaluate correctly the drain resistance in
the device [7].
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Summary. A nanoscale double-gate MOSFET is simu-
lated by using a model based on the maximum entropy prin-
ciple (MEP) by including the heating of the crystal lattice.
The influence of this latter on the electrical performace of
the device is discussed.

1 Mathematical model and simulations

The main aim of the paper is to simulate the nanoscale
silicon double gate MOSFET (hereafter DG-MOSFET)
reported in Fig. 1, by including also the crystal heat-
ing which can influence the electrical properties of
the device and pose severe restrictions on its perfor-
mance. In fact the phonons emitted by hot electrons
create a phonon hot spot which increases the gener-
ated power density of the integrated circuits. This ef-
fect is becoming crucial by shrinking the dimension
of the devices which is now below 100 nm, a length
comparable with the wavelength of acoustic phonons
[1, 2].

We consider a DG-MOSFET with length Lx= 40
nm, the width of the silicon layer Lz = 8 nm and the
oxide thickness tox = 1 nm. The n+ regions are 10 nm
long. The doping in the n+ regions is ND(x) = N+

D =
1020 cm−3 and in the n region is ND(x) = N−D = 1015

cm−3, with a regularization at the two junctions by a
hyperbolic tangent profile.

Due to the symmetries and the dimensions of the
device, the transport is, within a good approximation,
one dimensional and along the longitudinal direction
with respect the two oxide layers, while the electrons
are quantized in the transversal direction. Six equiv-
alent valleys are considered with a single effective
mass m∗ = 0.32me, me being the free electron mass.

Since the longitudinal length is of the order of
a few tents of nanometers, the electrons as waves
achieve equilibrium along the confining direction in a
time which is much shorter than the typical transport
time. Therefore we adopt a quasi-static description
along the confining direction by a coupled Schrödinger-
Poisson system which leads to a subband decomposi-
tion, while the transport along the longitudinal direc-
tion is described by a semiclassical Boltzmann equa-
tion for each subband.

Numerical integration of the Boltzmann-Schrödinger-
Poisson system is very expensive from a computa-
tional point of view, for computer aided design (CAD)
purposes (see references quoted in [3, 4]) In [3] we
have formulated an energy transport model for the
charge transport in the subbands by including the non
parabolicity effects through the Kane dispersion re-
lation. The model has been obtained, under a suit-
able diffusion scaling, from the Boltzmann equations
by using the moment method and closing the mo-
ment equations with the Maximum Entropy Princi-
ple (MEP). Scatterings of electrons with acoustic and
non polar optical phonons are taken into account. The
parabolic subband case has been treated and simu-
lated in [4].

The crystal heating is included adding a further
equation for the lattice temperature TL in the same
spirit as in ref.s [5, 6]

ρcV
∂TL

∂ t
−div [K(TL)∇TL] = H, (1)

with ρ and cV silicon density and specific heat respec-
tively. H is the phonon energy production given by

H =−(1+PS)nCW +PS J ·E, (2)

where PS plays the role of a thermopower coefficient,
nCW is the electron energy production term with n
electron density, and J is the current. The electron
density is related to the surface density in each sub-
band by the relation

n = ∑
ν

ρν |φν |2

where φν are the envelope functions obtained solving
the Schrödinger-Poisson system. In [5] a more general
model for H has been proposed.

We stress that the lattice temperature enters into
the electron-phonon scattering and in turn in the pro-
duction terms of the balance equations for the elec-
tron variables. The main aim of the present paper is to
address the importance of the crystal heating on the
electric performance of the device.

A suitable modification of the numerical scheme
for the MEP energy transport-Schrödinger-Poisson
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system developed in [4] is proposed which includes
also the discretization of the lattice temperature bal-
ance equation via an ADI approach. Since the charac-
teristic time of the crystal temperature is about one or
two orders of magnitude longer than that of electrons,
a multirate time step method is employed as in [6].

In the figures we report some preliminary results.
It is possible to see a tremendous raise of the crys-
tal energy kBTL, which at room temperature is about
0.0259 eV, near the drain where the electron energy
has its maximum values due to the high electric field
present there. It is likely that the lattice temperature
reaches the silicon melting temperature. This poses
severe restrictions on the source/drain and sorce/gate
voltages with stringent design constraints.

Fig. 1. Schematics representation of the simulated DG-
MOSFET
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Fig. 2. Electron density when the applied potential between
sorce and drain is VSD = 0.1 V and sorce and gate are
equipotential
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Summary. Systematic improvement of the performance
and lifetime of organic light-emitting devices (OLEDs) are
facilitated by electrical characterization through experiments
and simulations. We model charge transport in organic dis-
ordered materials with the aid of a numerical 1D model
for different experimental setups such as current-voltage
curves, current transients and electrical impedance spec-
troscopy. For large-area OLEDs we couple the anode and
cathode with the 1D model leading to an efficient 1+2D ap-
proach.

1 Introduction

Although the commercial success of organic light-
emitting devices (OLEDs) in displays and lighting
proceeds rapidly, further research is necessary to im-
prove the efficiency and lifetime. Numerical simula-
tions help to reduce the number of prototype itera-
tions. Electrical characterization of devices and mate-
rials is crucial as it sheds light on the physical mod-
els of charge carrier transport in disordered, organic
semiconductors. Charge transport and recombination
models have been introduced several years ago for
organic LEDs [1–5]. However, organic semiconduc-
tors differ considerably from their inorganic counter-
parts, not only by low carrier mobilities and long re-
combination times but also by the disorder. Taking
the disordered nature of organic materials into ac-
count leads to a description in terms of a Gaussian
density of states (DOS) which affects the mobility
of charge carriers and the diffusion coefficient. The
Gaussian DOS enhances the nonlinearities and the
coupling between the equations. These circumstances
prevent the use of classical drift-diffusion solvers.
With the aid of a one-dimensional numerical OLED
model we are able to simulate different operating
conditions such as current-voltage curves [6], dark-
injection measurements and impedance spectroscopy.
We conduct steady-state, transient and small-signal
analysis for the 1D OLED model and compare them
with experiments. For lighting applications OLED
panels are used that need to be as homogeneous as
possible. To take this requirement into account we
couple the 1D model to two 2D domains.

2 Physical Model

The drift-diffusion model (1) and (2) with the or-
ganic model ingredients (such as a Gaussian density
of states and the use of the Fermi-Dirac statistics) are
discretized with the finite volume method, the cur-
rent expression (3) with the Scharfetter-Gummel dis-
cretization [7]. The resulting system of discretized
equations is then solved in a coupled manner with
Newton’s algorithm for the transient as well as the
steady-state case [8].

∇ · (ε∇ψ) = q(n f +nt − p f − pt), (1)

∇ · Jn−q( ∂n
∂ t ) = qR(n f , p f ),

∇ · Jp +q( ∂ p
∂ t ) = −qR(n f , p f ),

(2)

Jn = −qn f µn∇ψ +qDn∇n f ,
Jp = −qp f µp∇ψ−qDp∇p f .

(3)

For the small-signal analysis, the steady-state volt-
age V0 is modulated with a sinusoidal voltage with the
amplitude V ac and with the angular frequency ω: V =
V0 +V aceiωt . The potential ψ and the charge densities
p and n can be expanded into a steady-state and har-
monic term, e.g. ψ(x, t) = ψ0(x)+ ψac(x)eiωt where
the ac components are complex-valued. To solve the
small-signal equations, the solution of the dc prob-
lem for V = V0 is required. After inserting the ex-
pansions into the linearized drift-diffusion model we
obtain a linear system of equations for the unkown
ac components and thus for the ac current Jac. From
the complex admittance Y = Jac/V ac, the small-signal
capacitance C and conductance G can be obtained.
Charge traps originate in impurities or material degra-
dation and affect the transport. In Fig. 1 we show the
effect of different charge trap types on the normal-
ized capacitance at different frequencies. Fast traps
are in quasi-equilibrium with free carriers, the tran-
sit time is longer than the trapping time whereas for
slow traps the transit time is shorter than the trapping
time. Slow traps enhance the capacitance at low fre-
quencies while fast traps follow the dynamics of the
trap-free case [9]. Similarly, charge traps affect cur-
rent transients and current-voltage curves.
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Fig. 1. Normalized capacitance of different trap types at var-
ious frequencies.

3 2+1D Approach for Large-area OLEDs

Aiming for a fast PC model for large-area OLEDs
we have to take into account that realistic OLED
structures consist of transparent anodes with a rela-
tively low electrical conductivity. This affects the ho-
mogeneity of the OLED. Metal grid structures are
applied to large-area OLEDs to improve the situa-
tion. To quantify the potential and temperature drop
in large-area OLEDs we extend the 1D modelling of
the organic material to higher dimensions. The 2+1D
approach captures the important features of the trans-
port process, and accounts for the high aspect ratio
between the in-plane and the through-plane dimen-
sions of OLEDs. In comparison to full 3D models,
the 2+1D approach requires a reduced number of de-
grees of freedom, but still provides the lateral poten-
tial and temperature distribution. We make use of our
in-house FEM tool (SESES) that allows the nonlinear
coupling of 2D domains with the aid of the 1D model
as shown in Fig. 2. The connection between the anode
and cathode can either be:

• a parameterized experimental curve
• an analytical formula
• or a numerical model.

In Fig. 2 we show an OLED panel before optimizing
the metal grid layout. No metal structure is present to
improve the homogeneity of the OLED.

4 Conclusions

In this paper, we present a 1D model for organic LEDs
that is applied to different operating conditions such
as steady-state, transient and ac response. We inves-
tigate different charge trap types and their influence
on the frequency-dependent capacitance. Further, we
propose a 2+1D modeling approach for large-area
OLEDs.

Fig. 2. Coupling of the 1D and 2D domains in an organic
LED model. We display the potential drop before a metal
grid structure is added.
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Summary. We propose a numerical model for estimating
the low frequency Capacitance-Voltage (CV) characteristics
of organic MOS structures and we use it to study the depen-
dence of CV curves on the DOS. Preliminary results seem
to suggest that low frequency CV measurements could be a
viable means to estimate the DOS width of a material inde-
pendently of its transport properties.

1 Introduction

Conjugated polymers are attracting increasing interest
as viable semiconducting materials for various appli-
cations such as Organic Solar Cells (OSCs) [4], Field
Effect Transistors (FETs) [7],Organic Light-Emitting
Diodes (OLEDs) [5], photodetectors [1]. For this rea-
son, much effort has recently gone in developing nu-
merical tools for the simulation of this new class of
devices [3,8]. In particular regarding charge transport
it must be reminded that organic semiconductors are
generally amorphous and as such are to be modelled
as disordered systems with localized states whose dis-
tribution is assumed to be in the simplest case a Gaus-
sian with variance centered at the Lowest Unoccupied
Molecular Orbital (LUMO) for electrons and centered
at the Highest Occupied Molecular Orbital (HOMO)
for holes. Charge carrier mobilities are modeled as-
suming that transport occurs as a hopping process
(a thermally activated tunnelling) between localized
sites and the variance of the Density of states appears
as a parameter in the models. A method for determin-
ing the value of for a given material independently of
its transport properties would greatly improve the pre-
dictive ability of numerical simulations. In this com-
munication, we propose a numerical model for esti-
mating the low frequency Capacitance-Voltage (CV)
characteristics of organic MOS structures and we use
it to study the dependence of CV curves on the DOS.
In addition to the Gaussian DOS, we explore the ef-
fect on CV of more elaborate DOS models, such as
two Gaussian distributions or a space-dependent dis-
tribution given by a Guassian with an exponential tail

close to the insulator interfaces which fades into a
Gaussian towards the bulk, simuating the effect of dis-
ordered electric dipoles within the insulator. Prelim-
inary results seem to suggest that low frequency CV
measurements could be a viable means to estimate the
DOS width of a material independently of its trans-
port properties.

metal semiconductor oxide metal

Ae

Wf

Ec = Wf-Ae

Ef = 0

Wf -q V

L tox

z=0

Fig. 1. Device geometry and relevant energetic levels in-
volved with a positive voltage applied at the gate contact.
Solid lines in the semiconducotr refer to the LUMO and
HOMO levels.

2 Model

A schematic representation of the device we consider
is given in Fig. 1 together with the relevant energetic
levels involved. It consists of a slab of thickness tox of
insulating material on top of a semiconducting layer
of thickness L sandwiched between two metals. If we
neglect gate leackage currents, the Fermi energy level
EF is constant throughout the device, so we can set
EF = 0 without loss of generality. The electric poten-
tial ϕ := −ELUMO/q in the device can be computed
by solving the equation

−div(ε∇ϕ) =−q n(ϕ) in (−L, 0)
−div(ε∇ϕ) = 0 in (0, tox)
ϕ|−L = ϕ0; ϕ|tox

= ϕox +V
(1)
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where ε denotes the electric permittvity, q the quan-
tum of charge V the externally applied potential and
the boundary condition values and are determined
from the contact metal work function and the semi-
conductor material electron affinity as shown in Fig. 1.
The accurate modeling of dependence of n on ϕ ,
which is crucial for understanding the impact of ener-
getic disorder. If we assume the DOS to be a Gaussian
centered at the LUMO, n may be expressed as

n =
∫

∞

−∞

gσ (E−ELUMO) f (E) dE (2)

where

gσ (x) =
N0

σ
√

2π
exp
{
− x2

2σ2

}
(3)

and F(E) is the Fermi distribution function. Although
the ansatz (3) is very common, it has been shown
in [6] that the energy level distribution may vary
greatly near the insulator-semiconductor interface due
to non-vanishing dipole density in the gate insulator
material rendering (3) quite inaccurate. As the ap-
proach given by [6] for the modification of the DOS
due to such effect has a very high computational cost,
we take an alternative approach in order to account
for this effect while retaining an acceptable level of
model complexity. We introduce a modified density
of state which we assume to take the following form

gσ ,λ (x) = gσ (x)+
λNλ

2
exp{−λ |x|} (4)

and compute the parameters σ and λ in (4) via an
automatic optimization procedure in order to fit the
model of [6]. Fig. 2 shows a comparison of the sim-
plified model (4) with that of [6].

3 Numerical algorithms and results

The CV characteristics are obtained from equations (1)-
(4) via the numerical method, based on a Newton
iteration, described in [2]. Suitable quadrature rules
have been devised to compute the integrales appear-
ing in (3) and (4) which need to be evaluated many
times at each iteration step. The preliminatry numeri-
cal results shown in Fig. 3 show a strong dependence
of the CV curves (and of its derivative) on the dis-
order parameter σ . Ongoing research is directed to-
wards the solution of the inverse problem of deter-
mining σ from measured CV characteristics.
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Summary. In PDE constrained optimization, physical pa-
rameters need to be determined so that some objective func-
tion is minimized. We assume here an objective function
that depends on the output of a dynamical system, mod-
eled by a discretized PDE. Krylov-Padé model reduction for
computing the output can significantly decrease the compu-
tation time. In addition, gradients are well approximated,
which allows using gradient based optimization on the re-
duced model. We show numerical results for different meth-
ods embedded in line search and trust region methods for
benchmark problems from structural engineering.

1 Introduction

Given a dynamical system described by the follow-
ing system of second order ordinary differential equa-
tions:

(K + sC+ s2M)x = f u(s) (1)
y(s) = dT x

where K, C, and M are respectively the stiffness,
damping and mass matrices, are sparse, and have size
n× n with n large. The vector f is input and d the
output vector. Let the matrices depend on parameters
γ ∈ Rp, then we wish to determine the value of γ that
minimizes one of the following functions

g2(γ) =
∫

ωmax

ωmin

|y(iω)|2dω (2)

g∞(γ) =
ωmaxmax
ωmin
|y(iω)| (3)

The evaluation of g is expensive. We will therefore
define a reduced model of (1) that approximates y well
and is, because of its size, much cheaper to evaluate.
The results of this paper are a summary of the full
papers [4] [3]. In the remainder of the paper we use
A(s) = K + sC+ s2M.

2 Krylov-Padé model reduction

One of the most popular model reduction techniques
for vibrations are Krylov methods. For second order
problems as (1), the SOAR method [1] is preferred.
This method builds the matrices Vk,Wk ∈ Cn×k with
k � n. The columns of Vk span the derivatives of

orders 0, . . . ,k− 1 of A−1(s) f around s = s0. Simi-
larly, the columns of Wk span the derivatives of orders
0, . . . ,k− 1 of A−∗(s)d around s = s0. The reduced
model is defined as

(K̂ + sĈ+ s2M̂)x̂ = f̂ u(s) (4)

ŷ(s) = d̂T x̂

with K̂ =W ∗k KVk, Ĉ =W ∗k CVk, and M̂ =W ∗k MVk, and
the vectors f̂ = W ∗k f and d̂ = V ∗k d. It can be proven
that the first 2k derivatives of y and ŷ evaluated at
s = s0 match. This property is also known as moment
matching.

In order to evaluate g for a given γ = γ?, we first
build the corresponding reduced model ŷ using the
two-sided SOAR method for the given value γ?. The
matrices K̂, Ĉ, and M̂ then also depend on γ . We hence
have an interpolatory reduced model around the inter-
polation point γ?. It can be shown [4] that ∇γ y(γ?)
and ∇γ ŷ(γ?) match the first k derivatives around s0.
We may thus conclude that two-sided SOAR models
compute accurate approximations to y and its gradient
s around s0 and for fixed γ .

Then, g is computed using ŷ. For g2, we use a
quadrature rule, and for gmax we use a global opti-
mization method consisting of a coarse grid search
and local improvement by a quasi Newton method [4].
The gradient is computed accordingly.

Let us assume p = 1, i.e., γ is a single parame-
ter. Another method that we will use for optimization
is the PIMTAP method [2]. This is also a moment
matching method for s, where in addition, also mo-
ments are matched for γ , as well as cross moments,
i.e. the derivatives ∂ j+iy/∂ s j∂γ i. The reduced model
can then be used to efficiently evaluate y for all s near
s0 and γ near γ?.

3 Line search optimization

In general, (2) is a nonconvex optimization problem.
The default method for such problem is problably the
damped BFGS method. In iteration j, the j+1st iter-
ate is computed as

γ j+1 = γ j +α j p j , H j p j =−∇γ g(γ j)

where H j is the BFGS approximation of the true Hes-
sian of g. For a nonconvex function, we determine α j
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so that the Armijo condition is satisfied. This is a con-
dition that forces sufficient decrease of the objective
function in order to achieve convergence. In general, a
number of γ j+1’s have to be computed for a sequence
of values of α j’s until the Armijo condition is satis-
fied. This is called backtracking. For each new value
of γ , we build a new reduced model using the SOAR
method.

Since γ j+1 lies on a line in the parameter space,
g(γ j+1) can be efficiently computed when we have a
reduced model for both s and γ j +α p j for α in some
interval. This can be achieved by a reduced model us-
ing the PIMTAP method.

We used damped BFGS accelerated by SOAR
or PIMTAP for minimizing the vibrations in a con-
crete floor subjected to road noise by determining
the best parameters of the floor damper [4]. In this
case, there were two parameters: the stiffness and
the damping of the floor damper. We see from Ta-
ble 1 that for the optimization of g2, which is usu-
ally smooth and differentiable, the two-sided SOAR
method reaches the best performance, while the min-
imization of g∞, which is not a smooth function and
therefore requires many backtracking steps, is more
efficient using PIMTAP. We also conclude that g∞ op-

g2 g∞

Direct 7,626 41,069
SOAR 179 1,104
PIMTAP 360 417

Table 1. Timings in seconds for the damped BFGS method
for the optimization of a concrete floor damper

timization is harder than g2 optimization, because g∞

is a nonsmooth function.

4 Trust region based optimization

In [3], we discussed trust region approaches exploit-
ing the effort done to build a reduced model. In the
SOAR approach, we used the reduced model (4) for
evaluating g for a fixed γ = γ j. The idea here is sim-
ple: since ∇γ g is well approximated at γ j, the reduced
model approximates g well for other values of γ , if g
is Lipschitz continuous at γ j. In contrast to the SOAR
approach, we use (4) as a parametric model in s but
also in γ , in a trust region setting. The difficulty is that
this reduced model is an extrapolation and may there-
fore quickly lose its accuracy. Therefore, we devel-
oped a simple error estimation to control the quality
of the reduced model. Since the Hessian is not nec-
essarily well approximated, we rely again on a quasi-
Newton method.

We then defined a trust region method, based on
the error estimation of the reduced model. The trust

region contains the set of parameters γ where the re-
duced model is accurate. An error-based trust region
approach is then used, relying on Cauchy points to
guarantee convergence of the method. The solution of
the trust region subproblem is cheap, since it fully re-
lies on the reduced model. However, in order to have
a provably convergent method, we may sometimes re-
quire additional reduced models to refine the trust re-
gion [3].

Table 2 compares the SOAR approach and the
trust region approach for a model of a footbridge with
four dampers. The eight parameters that model these
dampers have to be determined so that the vibration
in some point on the bridge is minimized. Note that
only two reduced models are required, while 70 are
needed for the SOAR approach. This leads to an im-
portant reduction of the computation time. However,
it should be noted that the error estimation of g using
the reduced model is much more expensive than eval-
uating the reduced model. This explains why there is
no speed-up of a factor 35.

Direct SOAR Trust region
Time (s) 70×540 897 194
iter. 70 70 2

Table 2. Results for the footbridge problem
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Summary. We use a Stroud-based collocation method to
analyze the parameter behavior of the time-harmonic Max-
well equations and reduce the computational costs by ap-
plying model order reduction to the system matrices.

1 Motivation

During the design process of semiconductor struc-
tures, simulations of new micro and nano scale sys-
tems are essential due to, e. g., the expensive produc-
tion of prototypes. An important aspect is the ongo-
ing miniaturization of the structures on the one hand
and the increase in the working frequencies on the
other hand. The high density of electric conductors
induces parasitic effects, e. g., crosstalk, which have
to be considered already in the design stage. There-
fore, the exact knowledge of the semiconductor struc-
tures and the surrounding electromagnetic (EM) field
is necessary.
Another effect, which plays a no longer negligible
role, is the variation of the feature structure size caused
by inaccuracies of the resolution during the lithogra-
phy. To consider these variations in the simulation,
models with parametric uncertainties are required. A
variational analysis of the effect of these uncertain-
ties on the EM field requires methods for uncertainty
quantification (UQ) [4, 6]. For this purpose, we will
employ non-intrusive approaches as they allow the
use of EM field solvers for deterministic problems
without accessing the source code. Possible choices
are Monte Carlo and stochastic collocation. Here we
will employ the latter due to their faster convergence.
Still, UQ via stochastic collocation requires numer-
ous full-order EM field solves which can be a time-
consuming task for complicated 3D geometries. It is
thus our goal to combine this approach with model or-
der reduction methods (MOR) for the Maxwell equa-
tions to reduce the computational cost, where the
reduced-order model needs to preserve the statisti-
cal properties of the full-order model. All these prob-
lems are addressed within the research network Model
Reduction for Fast Simulation of New Semiconduc-
tor Structures for Nanotechnology and Microsystems
Technology (MoreSim4Nano), see [5]. Figure 1 shows
a coplanar waveguide which serves as a benchmark

Fig. 1. Coplanar waveguide.

within MoreSim4Nano and for which we show some
numerical results in Section 4.

2 Stochastic Collocation for EM Field
Computations

The system of equations describing the EM field are
Maxwell’s equations

∂t(εE) = ∇×H−σE−J
∂t(µH) =−∇×E
∇ · (εE) = ρ

∇ · (µH) = 0,

with the electric field intensity E, the magnetic field
intensity H, the charge density ρ , the impressed cur-
rent source J, and material parameters ε = εr ·ε0 (per-
mittivity), µ = µr · µ0 (permeability), σ (electrical
conductivity). For simplification, we work with the
time-harmonic form

∇× (µ−1
∇×E)+ iω σ E−ω

2
ε E = iω J, (1)

on the space X = {E ∈ H0
curl |∇ · (εE) = ρ}.

Up to now, we consider the material parameters εr, µr,
and σ as uncertain. For the examination of their influ-
ence on the statistical behavior of the solution E we
use stochastic collocation [1] with Stroud interpola-
tion points [2].

2.1 Stochastic Collocation

Collocation methods rely on interpolation. The idea is
to approximate high-dimensional integrals, e. g., the
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expectation value of our solution E, by an (efficient)
quadrature rule

E(E) =
∫

Γ

E(ξ ) f (ξ )dξ ≈
n

∑
i=1

E(ξi)wi.

Here Γ is the image of the probability space under
the probability measure, f is the unknown probability
density function of E, ξi are the n interpolation points
and wi are the associated weights.

2.2 Stroud Integration

The interpolation formula used in our algorithm was
introduced in 1957 by A. H. Stroud [7] and yields
either beta or normal distributed interpolation points
which are weighted by 1/n, where n is the number of
interpolation points as in Sec. 2.1. Though we need
εr, µr > 0 and σ ≥ 0, we suppose them to be log-
normal distributed and use the exponential of the nor-
mal distributed Stroud points as interpolation points.

3 Model Order Reduction

The discretization of (1) leads to the following system

µrAµ0e+ εrAε0 ë+σAė = Bu,

y =Ce,

where e is the discretized electric field, Aµ0 , Aε0 and
A are the parameter independent system matrices in
RN×N , u, y define the inputs/ outputs, and B,C spec-
ify the input/ output behavior. Here N is the number
of grid points in G and large. This system is then re-
duced, e. g., by means of rational interpolation meth-
ods as in [3] and we achieve a reduced system of the
form

µrÂµ0 ê+ εrÂε0
¨̂e+σ Â ˙̂e = B̂u,

ŷ = Ĉê,

where Âµ0 , Âε0 , Â ∈ Rr×r with r � N and ‖y− ŷ‖
small.

4 Numerical Results Concerning the
Stochastic Collocation Approach

As a benchmark we consider a coplanar waveguide
with dielectric overlay, see Figure 1. The model con-
sists of three perfectly conducting striplines situated
at a height of 10mm in a shielded box with perfect
electric conductor (PEC) boundary. The system is ex-
cited at one of the discrete ports and the output is
taken at the other one.
Below a height of 15mm there is a substrate with
ε1

r ≈ 4.4 and σ1 ≈ 0.02S/m, above there is air with

ε2
r ≈ 1.07 and σ2 ≈ 0.01S/m, while µr ≈ 1 within

the whole box. The variance of each parameter is ap-
proximately 1% of the expected value.
The system is treated as a system with 5 uncertain pa-
rameters, which leads to the affine discretized form

µrAµ0e+(ε1
r A1

ε0
+ ε

2
r A2

ε0
)ë+(σ1A1 +σ

2A2)ė = Bu,

y =Ce.

The discretization is done in FEniCS by use of Nédé-
lec finite elements and the Stroud-based collocation
is implemented in MATLAB R©. Since the used dis-
cretization has only 18755 degrees of freedom, there
is no model order reduction used up to now.
The Stroud-based collocation uses only 10 support-
ing points and the computation requires less than a
minute. To verify the accuracy, the results are com-
pared with a Monte Carlo simulation which oper-
ates on 10000 interpolation points. This takes several
hours. Using the frequency ω = 0.6 · 109 we achieve
the following relative errors for the expected value of
e and y

errrel,E(e) = 0.0038% and errrel,E(y) = 0.0042%.

Considering the fact that we use only 10 Stroud points
the results are satisfactory. To achieve more accuracy
one could use, e. g., a lot more sparse grid points,
which would be much more expensive. For this reason
and for systems of higher dimension we need MOR.
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Summary. An output error bound is proposed for model
order reduction of linear time invariant (LTI) systems. Ac-
cording to the error bound, the model order reduction method
based on moment-matching (moment-matching MOR) can
be implemented by selecting the expansion points adap-
tively, such that the reduced model can be obtained auto-
matically. The error bound is an estimation for the error be-
tween the transfer function of the original system and that
of the reduced model. Simulation results show the efficiency
of the error bound.

1 Introduction

Consider an LTI system

E dx
dt = Ax+Bu(t),

y(t) = Cx. (1)

If we use moment-matching MOR, usually we apply
the Laplace transform to (1), and get

sEx(s)−Ax(s) = Bu(s),
y(s) =Cx(s). (2)

From the series expansion of x(s),

x(s)=
∞

∑
i=0

[−(s0E−A)−1E]i(s0E−A)−1BU(s)(s−s0)
i,

(3)
the matrix V is computed as

range{V} = span{B̃(s0), Ã(s0)B̃(s0),
. . . , (Ã(s0))

qB̃(s0)},
(4)

where Ã(s0) = (s0E−A)−1E, B̃(s0) = (s0E−A)−1B
and q� n. The reduced model is

V T EV dz
dt = V T AV z+V T Bu(t),

y(t) = CV z. (5)

Instead of using single-point expansion s0, one can
use multi-point expansion to compute V . That is, choos-
ing multiple expansion points si, i = 0,1, . . .m, we
compute each matrix Vi corresponding to si according
to (4). Finally, V = orthogonalize{V1, . . . ,Vm}.

By using multi-point expansion, the error of the
reduced model can be kept small in a wider frequency
range. At present, how to adaptively choose the ex-
pansion points si is under investigation using several

points of view. We aim to derive an error bound for
the transfer function Ĥ(s) of the reduced model, such
that the expansion points can be adaptively chosen ac-
cording to the error bound. Since the transfer function
can be considered as the impulse response of the LTI
system in frequency domain, the error bound can be
considered as the output error bound in frequency do-
main.

The error bound is motivated by the idea in [1],
where an output error bound for the weak form of
a parametrized Partial Differential Equation (PDE) is
derived. The error bound in [1] is obtained in the func-
tion space for the weak form, where all the parame-
ters in the PDE must be real variables. Since moment-
matching MOR directly deal with the discretized sys-
tem (2) in the vector space, it is best that an error
bound is derived in the vector space rather than in the
function space. Moreover, system (2) can be seen as
a parametrized system with parameter s being a com-
plex variable.

In summary, in order to obtain the error bound for
Ĥ(s), the method in [1] is not valid due to the chal-
lenges below:

1. The error bound should be derived in the vector
space Cn.

2. The error bound should be valid for complex pa-
rameters.

Method for deriving the output error bound must be
adapted in order to meet the above two challenges.

2 Output Error Bound for an LTI System

We first present the analysis for single-input single-
output (SISO) systems, then extend the result to multiple-
input multiple-output (MIMO) systems.

We assume that the matrix G(s) = sE−A satisfies

Re(x∗G(s)x)≥ α(s)(x∗Ãx), (6)

and
Im(x∗G(s)x)≥ γ(s)(x∗Ãx), (7)

where Re(·) means the real part of x∗G(s)x, and Im(· · ·)
is the imaginary part. α(s),γ(s): C → R+ may de-
pend on the parameter s. The matrix Ã = s0E −A is
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assumed to be symmetric, positive definite, which is
satisfied by many engineering problems.

For systems with C 6= BT , we need to define a dual
system in frequency domain,

s̄E∗xdu(s)−A∗xdu(s) =−C∗,
ydu = B∗xdu(s).

(8)

Let rpr(s) = B− G(s)x̂(s) be the residual for the
primal system in (2), and rdu(s) = −C∗ − (s̄E∗ −
A∗)x̂du(s) = G∗(s)x̂du(s) be the residual for the dual
system. We will show that rpr(s) can be represented
through a vector ε̂ pr ∈ Cn, and rdu(s) can be repre-
sented through a vector ε̂du ∈ Cn.

Define a function f pr(ξ ) = ξ ∗rpr(s) : Cn→C for
the primal system. From the Riez representation the-
orem, there exists a unique vector ε̂ pr ∈ Cn, such that

f pr(ξ ) = 〈ε̂ pr,ξ 〉= ξ
∗Ãε̂

pr. (9)

We also define a function f du(ξ ) = (rdu(s))∗ξ : Cn→
C. Similarly, there exists a unique vector ε̂du ∈ Cn,
such that

f du(ξ ) = 〈ε̂du,ξ 〉= ξ
∗Ãε̂

du. (10)

Theorem 1. If the reduced model of the primal sys-
tem (2) and that of the dual system (8) is computed
by the same projection matrix V , the matrices E, A
are symmetric, and G(s) satisfies (6), and (7), then
−SR− βR ≤ Re(H(s)− Ĥ(s)) ≤ SR− βR and −SI −
βI ≤ Im(H(s)− Ĥ(s))≤ SI−βI . Here,
βR =

1
4α(s) (ε̂

pr)∗Ãε̂du+ 1
4α(s) (ε̂

du)∗Ãε̂ pr , βI =
α(s)
γ(s) βR,

SR = 1
2α(s)

√
(ε̂ pr)∗Ãε̂ pr

√
(ε̂du)∗Ãε̂du, SI =

α(s)
γ(s) SR.

From Theorem 1, we get the error bound,

|H(s)− Ĥ(s)| ≤
√

B2
R +B2

I := ∆(s), (11)

where BR =max{|SR−βR|, |SR+βR|}, BI =max{|SI−
βI |, |SI +βI |}. The error bound ∆(s) can be computed
cheaply though it is dependent on the parameter s,
because the main computational part for ∆(s) is in-
dependent of s, which can be implemented off-line.
If relative error is preferred, one should use ∆re(s) =
∆(s)/Ĥ(s). For MIMO systems, assume Hi j(s) is the
transfer function corresponding to the ith input and
jth output. For each pair of i, j, we can compute
∆i j(s). The error bound ∆(s) can be defined as ∆(s) =
max

i j
∆i j(s).

3 Adaptively Choosing Expansion Points

From the construction of the error estimator ∆(s), the
projection matrix V can be constructed by the algo-
rithm as below,

Algorithm 1 V = [];
Choose initial s∗;
ε = 1 ;
While ε ≥ εtol (εtol < 1 is the error tolerance.)

range(V )= range(V )+span{B̃(s∗), Ã(s∗)B̃, . . . , Ãq(s∗)B̃};
s∗= arg max

s∈Ξtrain
∆(s); (Ξtrain is the sample space

for s.) ;
ε = ∆(s∗);

End While

4 Simulation Results

We take two examples to support the theoretical anal-
ysis above. One example is a spiral inductor, a SISO
system; the other is an optical filter, a system with 5
outputs. Both examples are taken from the Oberwol-
fach Benchmark Collection (URL: http://simulation.uni-
freiburg.de/downloads/benchmark).

Define εmax =max
i j

max
k
|Hi j(sk)−Ĥi j(sk)|/|Ĥi j(sk)|

as the maximal true error of the current Ĥ(s) over
2000 sample points, and it is used as the error of the
current reduced model. Results of Algorithm 1 for the
spiral inductor is listed in Table 1. r is the order of
the reduced model. After 4 iterations, four expansion
points have been selected, a reduced model with accu-
racy O(10−8) is obtained. Figure 1 plots εmax vs. the
error bound ∆re(s) for the multi-output system, show-
ing ∆re(s) performs well, especially at the latter itera-
tions.

Table 1. Spiral inductor q= 5, εtol = 10−3, n= 1434, r = 24

iteration s∗/( jω) εmax ∆re(s∗)
1 1×1010 0.30 86.99
2 3.43×107 0.04 16.15
3 3.39×108 7×10−5 6×10−3

4 1.41×109 7.73×10−8 7.50×10−6

Fig. 1. Optical filter, q = 1, εtol = 10−3, n = 1668, r = 21.
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Summary. We propose a model order reduction (MOR)
approach for networks containing simple and complex com-
ponents modeled by linear ODE and nonlinear PDE systems
respectively. These systems are coupled through the network
topology using the Kirchhoff laws. We consider as applica-
tion MOR for electrical networks, where semiconductors
form the complex components. POD combined with discrete
empirical interpolation (DEIM) and passivity-preserving bal-
anced truncation methods for electrical circuits (PABTEC)
can be used to reduce the dimension of the whole model.

1 Introduction

We propose a simulation-based MOR approach for
the reduction of networks consisting of (many) simple
and (only few) complex components. We assume that
the simple and complex components are modeled by
systems of linear ODEs and nonlinear PDEs, respec-
tively, which are coupled through the network topol-
ogy using the Kirchhoff laws.

Fig. 1. Sketch of a coupled system with one semiconductor
forming the complex component.

We consider electrical networks where the simple
components consist of resistors, capacitors, voltage
sources, current sources, and inductors, and the com-
plex components are formed by e.g. semi-conductors,
see Fig. 1. The overall system then is represented by

a nonlinear PDAE system, see e.g. [2, 5]. We address
the following issues:

1. construction of reduced order models for the com-
plex components

2. reduction of the complete network while retain-
ing the structure of a network

2 Modeling of an electrical network

In electrical networks resistors, capacitors, and induc-
tors form the simple components which in general are
modeled by linear ODEs. Complex components are
given by e.g. semiconductors which are modeled by
PDE systems. Considering additional voltage and cur-
rent sources the overall network can be modeled by a
partial-differential algebraic equation (PDAE) which
is obtained as follows. First the network containing
only the simple components is modeled by a differen-
tial algebraic equation (DAE) which is obtained by a
modified nodal analysis (MNA), including the Ohmic
contacts ΓO of the semiconductors as network nodes,
see Fig. 1. Denoting by e the node potentials and
by jL, jV , and jS the currents of inductive, voltage
source, and semiconductor branches, the DAE reads
(see [5, 9, 12])

AC
d
dt

qC(A>C e, t)+ARg(A>R e, t)

+AL jL +AV jV +AS jS =−AI is(t), (1)
d
dt

φL( jL, t)−A>L e = 0, (2)

A>V e = vs(t). (3)

Here, the incidence matrix A = [AR,AC,AL,AV ,AS,AI ]
represents the network topology, e.g. at each non mass
node i, ai j = 1 if the branch j leaves node i and
ai j = −1 if the branch j enters node i and ai j = 0
elsewhere. In particular the matrix AS denotes the
semiconductor incidence matrix. The functions qC,
g and φL are continuously differentiable defining the
voltage-current relations of the network components.
The continuous functions vs and is are the voltage and
current sources. For details we refer to [7].

In a second step the semiconductors are modeled
by PDE systems, which are then coupled to the DAE
of the network, see e.g. [1, 2] and the references cited
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there. Further details of our approach are given in [7].
The analytical and numerical analysis of PDAE sys-
tems of the presented form is subject to current re-
search, see [2, 4, 11, 12].

3 Reduced order models for complex
components

We assume that every complex component is modeled
by a time-dependent PDE system which is amenable
to a numerical treatment with Galerkin methods. Af-
ter appropriate spatial discretization the method of
lines then yields a large, nonlinear ODE system rep-
resenting the spatially discrete complex component.
This nonlinear ODE system now represents the com-
plex component in the network. The reduction of the
complex components is based on simulation-based
MOR with proper orthogonal decomposition (POD).
In this approach time snapshots of the complex com-
ponents are extracted from snapshots of the simula-
tion of the complete network. POD for the complex
component then is performed using the extracted parts
of the snapshots. In combination with the direct em-
pirical interpolation method (DEIM) this now delivers
low dimensional, nonlinear surrogate models for the
complex components, see [6] for details. It is an im-
portant feature of this reduction technique that it de-
livers distinct reduced order models for the same com-
plex component at different locations in the network.

4 Reduction of the whole network

The overall network with simple and complex com-
ponents is represented by a nonlinear DAE system,
where the linear and nonlinear part stems from the
simple and spatially-discrete complex components re-
spectively. The reduction for the complex components
is performed as in the previous section, whereas the
linear part is approximated by a reduced order linear
model of lower dimension. In the case of an electri-
cal network the passivity preserving reduction method
(MATLAB Toolbox) PABTEC [8, 10] is used for the
reduction of the linear part of the network. Finally, the
reduced order models obtained with the approaches
sketched are recoupled appropriately. The obtained
large and sparse nonlinear DAE system as well as
the small and dense reduced-order model are inte-
grated using the DASPK software package [3] based
on a BDF method, where the nonlinear equations are
solved using Newton’s method.

The results obtained demonstrate that the recou-
pling of the PABTEC reduced order model with the
POD-MOR model for the semiconductor delivers an
overall reduced-order model for the circuit-device sys-
tem which allows significantly faster simulations (the

speedup-factor is about 20) while keeping the relative
errors below 10%.

Finally we sketch how our approach can be ap-
plied to parametrized MOR extending the techniques
of [7].
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Summary. Model order reduction (MOR) has been widely
used in the electric networks but little has been done to re-
duce higher index differential algebraic equations(DAEs).
Most methods first do an index reduction before reducing
a higher DAEs but this can lead to loss of system physical
properties. In this paper we present a new MOR method for
DAEs called the index-aware MOR (IMOR) which can re-
duce higher index-2 system while preserving the index of
the system.

1 Introduction

Consider a linear time invariant (LTI) DAE system:

Ex′(t) = Ax(t)+Bu, x(0) = x0, (1a)

y(t) =CTx(t), (1b)

where E,A∈Rn,n, B∈Rn,m,C ∈Rn,`,x(t)∈Rn is the
state vector, u(t) ∈ Rm is the input vector, y(t) ∈ R`

is the output vector and x0 ∈ Rn must be a consistent
initial value since E is singular. In many MOR meth-
ods [1] they always assume that x0 = 0 which lead
to a transfer function H(s) = CT (sE −A)−1B if and
only if matrix pencil sE−A is regular. Unfortunately
for the case of DAEs we cannot always have this free-
dom of choosing an arbitrary initial condition x0, in-
fact we cannot always obtain a transfer function espe-
cially for index greater than 1 as discussed in Sect. 2.
This motivated us to propose a new MOR technique
for DAEs called the IMOR method which takes care
of this limitation [2, 3]. In this technique before we
apply MOR we first decompose the DAE system into
differential and algebraic parts using matrix and pro-
jector chains introduced by März [4] in 1996. We then
use the existing MOR techniques such as the Krylov
based methods on the differential part and develop
new techniques for the algebraic part. This is done as
follows: Assume (1a) is of tractability index µ , then
it’s projector and matrix chains can be written as, set
E0 := E ,A0 := A, then E j+1 = E j−A jQ j, A j+1 :=
A jPj, j ≥ 0, where ImQ j = KerE j,Pj = In −Q j.
There exists µ such that Eµ is nonsingular while all E j
are singular for all 0≤ j < µ−1. Using these chains
we can rewrite Equation (1a) as projected system of
index-µ:

Pµ−1 · · ·P0x′+Q0x+ · · ·+Qµ−1x = E−1
µ

(
Aµ x+Bu

)
(2)

In order to decompose higher index systems (µ > 1),
März [4] suggested an additional constraint Q jQi =
0, j > i on the projector construction. If this constraint
holds then Equation (2) can be decomposed into dif-
ferential and algebraic parts. However, the März de-
composition leads to a decoupled system of dimen-
sion (µ + 1)n. It does not even preserve the stabil-
ity the DAE system. This motivated us to modify the
März decomposition using special basis vectors as
presented in papers [3] and [2] for the case of index-
1 and index-2 respectively. Our decomposition leads
to a decoupled system of the same dimension as that
of the DAE system. Then we apply Krylov methods
on the differential part and constructed subspaces to
reduce the algebraic parts. In Sect. 2 we briefly dis-
cuss the IMOR method for index-2 systems (IMOR-
2) more details can be found in [2].

2 Index-aware MOR for index-2 systems

Assume Equation (1a) is an index-2 system this im-
plies µ = 2. We observed that for higher index DAEs
there is a possibility of obtaining a purely algebraic
decoupled system depending on the nature of spec-
trum of the matrix pencil σ(E,A)=σ f (E,A)∪σ∞(E,A),
where σ f (E,A) and σ∞(E,A) is the set of the finite
and infinite eigenvalues respectively. This happens
when matrix spectrum has only infinite eigenvalues,
i.e.σ f (E,A) = /0. Thus higher index DAEs can be de-
composed into two ways. Due to space we are going
to only discuss the case when σ f (E,A) 6= /0 the other
case can be found in our paper [2]. We now assume
matrix pencil of Equation (1a) has atleast one finite
eigenvalue. We then construct basis vectors (p,q) in
Rn with their inversion (p∗,q∗)T for the projectors P0
and Q0 respectively where p ∈ Rn,n0 , q ∈ Rn,k0 . This
leads to a theorem below.

Theorem 1. Let P01 = pT
∗ P1 p, Q01 = pT

∗Q1 p, then
P01,Q01 ∈ Rn0,n0 are projectors in Rn0 provided the
constraint condition Q1Q0 = 0 holds.

Next, we construct another basis matrix (p01,q01) in
Rn0 made of n01 independent columns of projector
P01 and k1 independent columns of its complementary
projector Q01 such that n0 = n01 + k1 and it’s inverse
can be denoted by (p∗01,q

∗
01)

T . Then Equation (1) can
be decomposed as:
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ξ
′
p = Apξp +Bpu, (3a)

ξq,1 = Aq,1ξp +Bq,1u, (3b)

ξq,0 = Aq,0ξp +Bq,0u+Aq,01ξ
′
q,1, (3c)

y =CT
p ξp +CT

q,1ξq,1 +CT
q,0ξq,0, (3d)

where

Ap := p∗T01 p∗T0 E−1
2 A2 p0 p01, Bp := p∗T01 p∗T0 E−1

2 B,

Aq,1 := q∗T01 p∗T0 E−1
2 A2 p0 p01, Bq,1 := q∗T01 p∗T0 E−1

2 B,

Aq,0 := q∗T0 P1E−1
2 A2 p0 p01, Bq,0 := q∗T0 P1E−1

2 B,

Aq,01 := q∗T0 Q1 p0q01, Cp = pT
01 pT

0 C ∈ Rn01,`,

Cq,1 = qT
01 pT

0 C ∈ Rk1,`, Cq,0 = qT
0 C ∈ Rk0,`.

Equations (3a), (3b) and (3c) are of dimension n01,k1
and k0 respectively, where n = n01 + k1 + k0. System
(3) preserves stability of the DAE system (1) since it
can be proved that σ(Ap) = σ f (E,A). If we take the
Laplace transform of (3) and set ξp(0) = 0 then we
obtain

Y (s) =
[
Hp(s)+Hq,1(s)+Hq,0(s)

]
U(s)+Hq,0(0),

where Hp(s) =CT
p (sIn0 −Ap)

−1Bp,

Hq,1(s) =CT
q,1

[
Aq,1(sIn0 −Ap)

−1Bp +Bq,1
]
,

Hq,0(s) =CT
q,0

[
(Aq,0 + sAq,01Aq,1)(sIn0 −Ap)

−1Bp
]

+CT
q,0

[
Bq,0 + sAq,01Bq,1

]
, Hq,0(0)=−CT

q,0Aq,01Bq,1u(0).
Thus not always we can obtain the transfer function
of index 2 systems for arbitrary input vector u unless
Hq,0(0) = 0⇒ Y (s) = H(s)U(s). We can now apply
IMOR-2 method as follows: If we choose the expan-
sion point s0 ∈ C \ σ(Ap), we construct a Krylov-
subspace generated by Mp := −(s0In0 − Ap)

−1 and
Rp :=(s0In0−Ap)

−1Bp. Then, Vpr := orth(κr(Mp,Rp)),
r ≤ n01. We then use Vpr to construct the subspace
Vq,1 = span(Bq,1,Aq,1Vpr) and its orthonormal ma-
trix is denoted by Vqτ1 ,1

= orth(Vq,1),τ1 ≤ min((r +
1)m,dim(Vqτ1

)). We finally construct subspace
Vq,0 = Span{VQ1 ,VQ2 ,VQ3}, where
VQ1 = Aq,0Rp +Bq,0 + s0(Aq,01Aq,1Rp +Aq,01Bq,1),
VQ2 = Aq,01Bq,1,
VQ3 =

[
(Aq,0 + s0Aq,01Aq,1)Mp +Aq,01Aq,1

]
Vpr and it’s

orthonormal matrix is denoted by Vqτ0 ,0
= orth(Vq,0),

where τ0 ≤ min((r + 2)m,dim(Vq,0)). We can now
use the orthonormal matrices Vpr ,Vqτ1 ,1

and Vqτ0 ,0
to

reduce the dimension of the subsystems (3a), (3b) and
(3c) respectively as consequence the dimension of the
decoupled system (3) is also reduced. Hence, if we
substitute ξp =Vpr ξpr , ξq,1 =Vqτ1 ,1

ξqτ1 ,1
,

ξq,0 =Vqτ0 ,0
ξqτ0 ,0

, into system (3) and simplifying we
can obtain a reduced model of DAE system (1) which
will call the IMOR-2 model.

3 Numerical results

We used an index -2 test system called S8OPI in [5]
which is a large power system RLC model. It’s a

single-input single-output (SISO) system of dimen-
sion 4182. We applied the IMOR-2 method using
s0 = j103. We obtained a reduced model of total di-
mension 219 as shown in Table 1. We observed that
the magnitude of the transfer reduced model coincides
with that of the original model at low frequencies with
very small error as shown in Fig. 1. We have seen that

Table 1. Dimension of the Original and Reduced model

Models Dimension
n01 k1 k0

Original Model 4028 35 119
Reduced Model 170 1 48

the IMOR-2 method leads to good reduced model and
can be used on any index-2 system.

Fig. 1. Magnitude of the transfer functions

Acknowledgement. This work is funded by NWO.
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Summary. We present some new results for model order
reduction of Maxwell’s equations using an adaptive-order
rational Arnoldi method. In this context, we introduce a new
adaptive choice of expansion points.

1 Introduction

In view of the increasing frequency range and the pro-
gressing miniaturization, the analysis of parasitic ef-
fects has become an important task for the develop-
ment of integrated circuits. The appearing phenom-
ena, e.g. crosstalk or signal delay, are usually mod-
elled using Maxwell’s equations.
Since high-dimensional model problems are often nec-
essary for accurate simulations, model order reduc-
tion techniques are an important tool for the proper
and fast analysis of these phenomena.

1.1 Model Order Reduction

We will apply model order reduction for linear time-
invariant descriptor systems

E ẋ(t) = A x(t) + Bu(t),
y(t) = C x(t),

(1)

whereE ,A ∈R
N×N, B ∈R

N×m andC ∈R
p×N. Fur-

thermore,u(t) ∈ R
m andy(t) ∈ R

p denote the input
and the output of the descriptor system, respectively.
In general, descriptor systems are associated with the
transfer function

H (s) =C (sE −A )−1
B.

The reduced order model will be obtained from the
projection of the original model (1) onto a proper sub-
spaceVn ∈ R

N×n with n≪ N, i.e.

VT
n EVn ˙̃x(t) = VT

n A Vnx̃(t)+VT
n Bu(t),

y(t) = CVnx̃(t).

The computation of the subspaceVn should result in a
small error

‖H (s)−H̃ (s)‖

in terms of a proper norm, whereH̃ (s) denotes the
transfer function of the reduced order model.

2 Adaptive Krylov subspace methods

The idea of Krylov subspace methods for model re-
duction, e.g. [4], results from the expansion of the
transfer function

H (s) =
∞

∑
j=0

Y( j)(si)(s−si)
j ,

whereS:= {s1, . . . ,sk} denotes a given set of expan-
sion points andY( j)(si) = C TX( j)(si) with

X( j)(si) =
[

−(siE −A )−1
E

] j
(siE −A )−1

B.

The orthogonal columns ofVn span the same subspace
as

[

X(0)(s1), . . . , X( j1)(s1), . . . , X( jk)(sk)
]

.

In [4], the authors present an adaptive choice for the
size of the Krylov subspacesX( j)(si) applying the ra-
tional Arnoldi method. AssumingY( j)(si) = Ŷ( j)(si)
for all j = 0, . . . ,Ĵi−1 andsi ∈ S, the Krylov subspace
of the expansion pointsi ∈ Swith

max
si∈S

∣

∣

∣
Y(Ĵi)(si)−Ŷ(Ĵi)(si)

∣

∣

∣

is increased by one additional vector in each iteration
step. Here,̂Y( j)(si) denotes thej-th output moment of
the reduced order model.
The remaining problem of the adaptive-order ratio-
nal Arnoldi method (AORA) consists of the adequate
choice of the expansion points.

3 AORA with adaptive point selection

We will present a combination of the AORA method
and an adaptive expansion point selection. In detail,
from the subsequently computed reduced order mod-
els using the AORA method new expansion points are
determined, until a certain tolerance is reached. The
aim of the adaptive expansion point selection consists
of the computation of a reduced order model, which
offers a good approximation for the whole frequency
range.
For the definition of an adequate measurement of the
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error εm = ‖H (s)− Ĥn(s)‖, e.g. [3], we define the
approximation

ε̂m =
m

∑
l=1

2l−m‖Ĥl (s)−Ĥl−1(s)‖

‖Ĥl (s)‖
, (2)

whereĤk−1 andĤk denote transfer functionsof re-
duced order models obtained from the AORA method.
Since this definition does not give a hint, whetherε̂m

remains small due to convergence or stagnation, we
will add one more expansion point in each iteration
step.

3.1 Point selection for Maxwell’s equations

Due to the high-frequency model problems with the
frequency rangeI = [ fmin, fmax] the first two ex-
pansion points are always defined vias1 = i fmin and
s2 = i fmax, wherei denotes the imaginary unit. Fur-
thermore, all expansion points are purely imaginary.
Initially, we usually chooses1 = i fmin,s2 = i fmax and
s3 = i( fmin + fmax)/2 as the first set of expansion
pointsS0.
In the (k+ 1)-th iteration step, the expansion point
sk+1 = 2π i fk+1 is determined, such that

sk+1 = argmax
s

‖Ĥk(s)−Ĥk−1(s)‖

‖Ĥk(s)‖
. (3)

Specially, theerror during the(k+1)-th iteration step
(3) is computed alternatingly on the intervalsI1 =
[ fmin,( fmin+ fmax)/2]andI2= [( fmin+ fmax)/2, fmax].
If the error for the given intervalI1 or I2 is less than
a given toleranceδ > 0, we switch back to the other
interval and determine a new expansion point. This
new expansion point should have a certain distance to
previous expansion points from this interval.
Finally, the algorithm terminates, if the global approx-
imation errorε̂k reached a given tolerance or the er-
ror during the(k+1)-th iteration step (3) is less than
δ > 0 for both intervalsI1 andI2.

4 Numerical results

Some numerical results are presented for a coplanar
waveguide with a dielectric overlay, where the trans-
mission line is surrounded by two layers of multilayer
board. The single input, single output model problem
is enclosed in a metallic box and deals with the fre-
quency range[ fmin, fmax] = [0.6,3.0]GHz.
Here, the discretization of the model problem was car-
ried out using the Finite Integration Technique, e.g.
[5], with N = 32924 degrees of freedom.
Subsequently reduced order modelsHk(s)of dimen-
sionn= 30 have been computed untilε̂m< 10−12 ap-
plying the toleranceδ = 7.0· 10−11. The expansion
points in thei-th iteration step are denoted bySi .
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Fig. 1. Relative error for reduced order model with different
sets of expansions points.

After four iteration steps the algorithm terminates due
to the introduction ofδ > 0, where

max
s

‖Ĥ (s)−H (s)‖ ≈1.5·10−11.

Future results will comprise of the application of in-
complete multilevel factorizations for the computa-
tion of Krylov subspaces, e.g. [1], using previous
preconditioning techniques for Helmholtz equations.
Furthermore, exisiting adaptive expansion point se-
lections, e.g. for machine tool simulations [2], will
be applied to Maxwell’s equations. In this context, a
combination with the results from section 3 might be
adopted.
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Summary. The Reduced Basis Method generates low-order
models of parametrized PDEs to allow for efficient evalua-
tion of parametrized models in many-query and real-time
contexts.

We show the theoretical framework in which the Re-
duced Basis Method is applied to Maxwell’s equations and
present first numerical results for model reduction in fre-
quency domain.

1 Introduction

The Reduced Basis Method (RBM) generates low or-
der models for the efficient solution of parametrized
PDEs in real-time and many-query scenarios. The
RBM employs rigorous error estimators to perform
the model reduction and measure the quality of the
reduced simulation. In recent years, the RBM has
been developed to apply to a wide range of prob-
lems, of which [1] and the references therein, give an
overview.

We address the use of the RBM in time-harmonic
electromagnetic problems, which can exhibit param-
eter variations in geometry, material coefficients and
frequency. We use the RBM in large 3D problems,
that arise in the analysis of microscale semiconductor
structures.

2 Model Problem

As an example model, we consider the coplanar waveg-
uide, depicted in Fig. 1. The model setup is con-
tained in a shielded box with perfect electric conduct-
ing (PEC) boundary. We consider three perfectly con-
ducting striplines as shown in the geometry. The sys-
tem is excited at a discrete port and the output is taken
at a discrete port on the opposite end of the middle
stripline. These discrete ports are used to model input
and output currents/voltages.

2.1 Constitutive Equations

We consider the second order time-harmonic formu-
lation of Maxwell’s equations in the electric field E

∇×µ
−1

∇×E + iωσE−ω
2
εE = iωJ in Ω , (1)

      

Ω

discrete port

metallic striplines

Fig. 1. Geometry of coplanar waveguide.

subject to zero boundary conditions

E×n = 0 on ΓPEC. (2)

We use the weak formulation to (1) with bilinear
form a(·, ·;ν) and linear form f (·;ν) as

a(E(ν),v;ν) = f (v;ν) ∀v ∈ X , (3)

where ν ∈ D ⊂ Rp denotes the parameter vector,
E(ν) is the parameter-dependent electric field, v a test
function and X the H(curl)-conforming finite element
space, discretized with Nédélec finite elements.

All the model problems which are used in this
work have been developed in the MoreSim4Nano
project [3].

3 Reduced Basis Method for
time-harmonic EM-problems

The aim of the RBM is to determine a low order space
XN of dimension N, which approximates the paramet-
ric manifold

Mν = {E(ν)|ν ∈D} (4)

well. Given such a space XN , it is possible to gain ac-
curate approximations EN(ν) to E(ν) by solving (3)
in XN

a(EN(ν),vN ;ν) = f (vN ;ν) ∀vN ∈ XN , (5)
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i.e. projecting (3) onto XN .
An integral part in the model reduction are error

estimators ∆N(ν), which give rigorous bounds to the
approximation error in the H(curl) norm

‖E(ν)−EN(ν)‖X ≤ ∆N(ν). (6)

Additionally, the RBM requires to have fast evalu-
ations of the error estimator in the sense that the com-
plexity is O(N), i.e. independent of the large discreti-
sation of the full model. The necessary requirement is
an affine decomposition of the forms as

a(E(ν),v;ν) =
Q

∑
q=1

Θ
q(ν)aq(E(ν),v). (7)

3.1 Error Estimation

The error estimator in the field is given by

∆N(ν) =
‖r(·;ν)‖X ′

βLB(ν)
, (8)

with ‖r(·;ν)‖X ′ the dual norm of the residual and
βLB(ν) a lower bound to the inf-sup stability constant.

For error estimation in the output, the adjoint equa-
tion is solved to obtain the dual residual rdu(·;ν), such
that

∆
s
N(ν) =

‖rpr(·;ν)‖X ′

(βLB(ν))1/2

‖rdu(·;ν)‖X ′

(βLB(ν))1/2 , (9)

gives rigorous bounds in the output. Here, rpr(·;ν) de-
notes the original, primal residuum.

3.2 Geometric Parameters

To consider the linear combination of snapshots for
different geometries, the PDE is transformed from the
parameter-dependent domain Ω(ν) to a parameter-
independent reference domain Ω(ν).

Given a domain decomposition of Ω(ν), such that
each domain under consideration can be found under
affine transformations of the subdomains, the affine
decomposition (7) is possible and therefore allows the
Reduced Basis model reduction.

4 First Numerical Results

The full simulation has been performed with the finite
element package FEniCS using a discretization with
first order Nédélec finite elements. For our first nu-
merical experiments, we used a coarse discretization
of 2048 degrees of freedom. To work with geometric
variations, a larger resolution is required.

Fig. 2 shows the transfer function of the coplanar
waveguide. In our simulations, we applied the RBM

Fig. 2. Frequency response of coplanar waveguide.

over the frequency range [0.6,3.0] GHz. The time-
harmonic equations are already stated in the affine
form (7).

In Fig. 3, the relative approximation error for the
order N = 30 and N = 50 are shown. In the case of
N = 50, the relative error is already below 0.01%.
Overall, the RBM achieves fast convergence in that
the full model is approximated to machine precision
with a space XN of order 75 for the considered param-
eter range.

Fig. 3. Log-plot of relative error for N = 30 (left) and N =
50 (right).

References

1. G. Rozza, D.B.P. Huynh and A.T. Patera,
Reduced Basis Approximation and a Posteriori Error Es-
timation for Affinely Parametrized Elliptic Coercive Par-
tial Differential Equations,
Arch. Comput. Methods Eng. (2008) 15:229-275.

2. R. Hiptmair,
Finite Elements in computational electromagnetism,
Acta Numerica (2002) 237 - 339.

3. MoreSim4Nano,
Model reduction for fast simulation of new semicon-
ductor structures for nanotechnology and microsystems
technology,
www.moresim4nano.org

80 SCEE2012

pfister
Rectangle



Thursday, September 13

81 SCEE2012



82 SCEE2012



Electromagnetic Simulations in Power Electronic Converter Design 
 

Didier Cottet1, Stanislav Skibin1, Ivica Stevanovi�1, Bernhard Wunsch1
 

 
1 ABB Switzerland Ltd., Corporate Research, Segelhof 1K, 5405 Dättwil, Switzerland, 
didier.cottet@ch.abb.com, stanislav.skibin@ch.abb.com, 
ivica.stevanovic@ch.abb.com, Bernhard.wunsch@ch.abb.com 

 
 
 

 

Summary The energy efficiency trends in power 
electronic converter design are leading to increasing 
demands for faster switching devices with minimal 
switching losses. Consequences are electromagnetic 
design challenges such as parasitic stray inductances 
and high frequency impedance characteristics of 
passive components. The only way to systematically 
approach these challenges are dedicated methods for 
efficient electromagnetic simulation. 
 
1 Introduction 
 
Nowadays, power electronics plays a central role 
in the discussions on energy efficiency and is 
therefore gaining high attention in academic and 
industrial research. With the objective of 
improving the converter performance in terms of 
power quality, efficiency and cost, large progress 
is achieved in power semiconductors research. 
The consequences are that increasing blocking 
voltages, current switching capabilities and 
switching speeds, thus leading to very high dI/dt 
and dU/dt, and consequently to an increased 
complexity of EMI problems to be solved [1]. 
With the introduction of fast switching wide 
bandgap semiconductors (i.e. SiC and GaN), this 
trend will be even more significant [2].  

In order to systematically address above EMI 
problems, dedicated simulation methodologies 
for power electronic converter design have been 
developed. Even though the basic power 
converter circuit topologies are very similar for 
the various applications, the components used 
and the electromagnetic effects observed are very 
different, thus demanding for dedicated 
numerical methods.  

The methods discussed here include 3D field 
simulations, circuit simulations, semiconductors 
and passive components macro modeling and 
model simplification and acceleration methods. 
 
2 Methodologies 
 
One of the most relevant electrical design 
parameter in a power converter is the stray 
inductance in the power commutation loops [1]. 

3D field simulations magnetic field patterns (Fig. 
1), and current density distributions (Fig. 2), are 
therefore used to characterize and optimize the 
layouts of power modules [3] bus bars [4, 5] and 
PCBs for minimal stray inductance. 
 

 
Fig. 1 Magnetic field patterns inside an IGBT 
power module. 
 

 
Fig. 2 Current density distribution in planar 
multi-layer bus bar. 
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Fig. 3 Comparison of simulated and measured 
turn-off waveforms. 
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Extracted bus bar and PCB impedances are 
then used in circuit simulations to analyze the 
system switching behavior (Fig. 3) in the time 
and frequency domain [6, 7]. For that purpose, 
other system components also need to be 
modeled and added to the circuit. Most important 
components are the power semiconductors 
(IGBTs, diodes) [8] and passive components such 
as capacitors, chokes (Fig. 4) [9] or cables [10]. 
 

 
Fig. 4 Equivalent circuit of 3-phase choke. 

 

   
Fig. 5 Comparison of measured and modeled 
common- and differential mode impedance of a 
3-phase choke. 
 

With increasing number and complexity of 
component models, the computation effort can 
become prohibitively large and memory 
demanding. Different acceleration methods have 
therefore been developed at system model level 
with divide-and-conquer approaches [7], at 
component model level with model order 
reduction [4] and at solver level using reluctance 
matrix methods [4]. 
 
3 Summary 
 
In recent years, electromagnetic simulations have 
become a powerful tool for power electronic 
converter design. Major challenges have been to 
identify the appropriate numerical methods and to 
develop or adopt efficient simulation platforms 
and tools for the specific demands of power 
electronics. Today, the usage of simulations in 
actual product design is about to become 
standard, especially for IGBT power modules 
design, bus bar design and circuit simulation 
including electromagnetic macro models of active 
and passive components. 

References 
 
1. R. Bayerer, D. Daniel Domes, “Power circuit design 

for clean switching,” In Proc. 6th International 
Conference on Integrated Power Electronics 
Systems (CIPS), Nuremberg, Germany, 16-18 
March, 2010. 

2. I. Josifovi�, J. Popovi�-Gerber, J.A. Ferreira, 
“Improving SiC JFET switching behaviour under 
influence of circuit parasitics”, to appear on IEEE 
Transactions on Power Electronics, 2012. 

3. D. Cottet, S. Hartmann, U. Schlapbach, “Numerical 
simulations for electromagnetic power module 
design,” in Proc. IEEE Int. Sypmosium on Power 
Semiconductor Devices and ICs, ISPSD 2006, 
Naples, Italy, pp 1-4, June 4-8, 2006. 

4. D. Cottet, I. Stevanovi�, B. Wunsch, D. Daroui, 
J. Ekman, G. Antonini, “ EM simulation of planar 
bus bars in multi-level power converters,” to appear 
in Proc. IEEE EMC Europe Conference, Rom, 
Italy, Sept. 17-21, 2012. 

5. D. Cottet, I. Stevanovi�, “Electromagnetic 
simulation and design of complex, planar bus bars 
for multi-level, high power converters,” to appear in 
Proc. 13th IEEE Control and Modeling for Power 
Electronics (COMPEL), Conference, Kyoto, Japan, 
June, 10-13, 2012. 

6. M. Paakkinen, D. Cottet, “Simulation of the non-
idealities in current sharing in parallel IGBT 
subsystems,” in Proc. IEEE Applied Power 
Electronics Conference and Exposition, Austin, TX, 
USA, Feb. 24-28, 2008, pp. 211–215. 

7. I. Stevanovi�, D. Cottet, B. Wider, D. Daroui, and 
J. Ekman, “Modeling of large bus bars using PEEC 
method and circuit level simulators,” in Proc. 12th 
IEEE Control and Modeling for Power Electronics 
(COMPEL), Conference, Boulder, USA, 28-30 
June, 2010, pp.1-7. 

8. F. Chimento, N. Mora, M. Bellini, I. Stevanovi�, 
S. Tomarchio, “A simplified spice based IGBT 
model for power electronics modules evaluation,” in 
Proc. 37th Annual Conference of the IEEE 
Industrial Electronics Society IECON 2011, pp. 
1096-1101, Melbourne, Australia, Nov. 7-10, 2011. 

9. I. Stevanovi�, S. Skibin, “Behavioral circuit 
modeling of single- and three-phase chokes with 
multi-resonances,” in Proc. International 
Conference on Power Electronics, ECCE Asia, Jeju, 
Korea, May 30 – June 3, 2011. 

10. I. Stevanovi�, B. Wunsch, G.-L. Madonna, M.-
F. Vancu, S. Skibin, “Multiconductor cable 
modeling for EMI simulations in power 
electronics,” to appear in Proc. 38th Annual 
Conference of the IEEE Industrial Electronics 
Society, Montréal, Canada, Oct. 25-28, 2012. 

84 SCEE2012



Numerical Simulations for Power and Distribution Transformers
Thorsten Steinmetz1, Bernardo Galletti1, Jasmin Smajic2, and Andreas Blaszczyk1

1 ABB Switzerland Ltd, Corporate Research, CH-5405 Baden, Switzerland thorsten.steinmetz@ch.abb.com,
bernardo.galletti@ch.abb.com, andreas.blaszczyk@ch.abb.com

2 HSR- Hochschule für Technik Rapperswil, CH-8640 Rapperswil, Switzerland jsmajic@hsr.ch

Summary. Numerical simulations of different physical de-
sign aspects of ABB distribution and power transformers
are presented. The design aspects include stray loss assess-
ment, dielectric insulation and thermal management. The
simulations contribute to a better understanding of the op-
eration of transformers, which allows to improve the trans-
former product development.

1 Introduction

In the present days, energy-efficiency is a paramount
requirement in the life-cycle of power products, as it
is mandatory for an ecological and economical oper-
ation of transmission and distribution networks. Im-
portant components of these networks are distribu-
tion and power transformers. Hence, a high energy-
efficiency has to be targeted in the development and
design of modern transformers.

Evidently, low power losses during operation are
of particular importance to achieve a high energy-
efficiency. However, according to life-cycle-assessment,
low material usage for the production of transformers
contributes further to highly energy-efficient devices.
As a consequence, competitive transformer designs
have to be as compact as possible, thus approaching
the physical limits.

Power losses and compactness are mainly deter-
mined by the electric and the magnetic design of a
transformer. A part of this is the dielectric insulation
which clearly limits the compactness, because certain
insulation distances have to be maintained to prevent
failures by electric discharges. Moreover, the dissi-
pated power losses heat up the transformer compo-
nents during operation. The temperature rise within
the device, which affects the power losses and limits
the expected lifetime of the insulation, needs thus to
be controlled by a thermal management.

To achieve competitive transformer designs con-
sidering the aforementioned aspects, numerical simu-
lations have become a very significant tool in product
development and optimization.

2 Electromagnetic Simulations

For magneto-quasistatic simulations in transformers,
the commercial field solver MagNet is applied [1]. Its

Finite-Element-Method formulation is based on hier-
archical elements which allow to use shape functions
of various polynomial orders in the same mesh [4]. In
the frequency-domain, the magnetic vector-field H in
conductive domains,

curl
(
(σ + iωε)−1 curl(H)

)
+ iωµH = 0, (1)

and the scalar magnetic potentialΨ in non-conductive
domains,

div(µ (HS −grad(Ψ))) = 0, (2)

are the solved for. The angular frequency is denoted
by ω , while µ and ε denote the permeability and
the permittivity. In non-conductive domains, the mag-
netic field is computed by H = Hs − gradΨ with Hs
being a known source field. The resulting (non)-linear
systems of equations are solved by standard methods,
e.g. a Newton-Raphson scheme for linearization and a
preconditioned Conjugate Gradient solver for the lin-
ear systems.

2.1 Stray Loss Assessment

Three-dimensional magneto-quasistatic simulations are
applied e.g. for stray loss assessment of ABB trans-
formers. For example, Fig. 1 shows the distribution of
the stray losses on a dry-type transformer.

Fig. 1. CAD model of a dry-type transformer (left), and the
stray loss distribution on its structural components(right).

The accuracy of the simulated stray losses reached
here is about 7% [3]. Furthermore, the stray field
emission of transformers are subject to legal regula-
tions in some countries. An analysis of the magnetic
stray field of this unit will be shown.
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Beyond this assessment, electromagnetic simula-
tions are used to evaluate objective functions in the
frame of multi-objective optimization schemes. An
application of these schemes based on an evolution-
ary algorithm will be presented.

2.2 Dielectric Insulation

Standardized tests have to be passed in order to ver-
ify the dielectric insulation of real transformers, for
instance the applied voltage (AC) test or the light-
ning impulse (LI) test. The prediction of test results
for dry-type transformers requires an evaluation of the
dielectric design criteria that are based on stages of
the electric discharge in air, i.e. streamer inception,
streamer propagation and leader transition [2].

Under the AC and LI tests, for example, streamer
inception can be tolerated in small regions at sharp
edges of the core or terminals as long as the streamer
propagation criterion (based on clearances) is ful-
filled [2]. But streamer inception cannot be tolerated
in the weakly inhomogeneous field of the main duct
between low- and high-voltage windings, unless com-
plex barrier systems are used. To avoid inception, the
following criterion must be evaluated using electro-
static field computations:∫

S
αeff (E)dx < ln(Nc) (3)

Here, αeff denotes the effective ionization coefficient
w.r.t. the electric field magnitude E. Inception does
not occur if the integral along the discharge path S
(typically computed as a field line) is smaller than the
logarithm of the limit for electron generations Nc. Ap-
plications of the dielectric criteria to transformer de-
sign will be presented in the extended version of the
paper.

3 Thermal Simulations

One significant duty of the thermal management is to
control the temperature rise of the windings, which
originates from dissipated power losses. The higher
the average temperature of the windings, the higher
is their electric resistance, and thus the poorer is the
energy-efficiency in operation. Furthermore, the life-
time of the transformer depends on the highest tem-
perature in the windings.

The heat generated in the windings is transferred
by conduction through the solid winding insulation.
The heat is then taken away from the surfaces of the
solid insulation by the insulation fluid (e.g. oil or air)
via convection. The latter can be either forced or nat-
ural depending on whether the flow is driven by an
externally imposed pressure gradient or by buoyancy
effects, respectively.

Numerical simulations are applied to solve the
physical models that govern the heat transfer mech-
anisms described above. The numerical thermal prob-
lem involves the solution of the Navier-Stokes equa-
tions in the fluid, the heat conduction equation in the
solid parts and the radiation model for describing the
radiating energy exchanged between mutually facing
surfaces. As a result of the simulations, the spatial
temperature distribution inside the transformer is de-
termined. This simulation procedure has become pos-
sible recently for full three-dimensional transformer
configurations by using state-of-the-art computational
tools along with modern high-performance comput-
ers.

The simulation procedure was validated by com-
paring numerical results against measurements for a
dry-type transformer winding prototype, where the
conductors of the winding turns are casted in epoxy.
The maximum deviation between simulation and mea-
surements at the 31 sensor locations was less than 5%.
The simulated temperature distribution is shown in
Fig. 2.

Fig. 2. Simulated temperature distribution of a dry-type
transformer winding prototype cooled by natural convec-
tion.

This validated procedure was applied to compute
the temperature distribution of many transformer de-
signs. Details on the application to a particular dry-
type transformer will be presented.
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Summary. This presentation considers uncertainty quan-
tification from an industrial perspective. Some successful
methods in the field of stochastic optimization and reliabil-
ity analysis as well as industrial applications are presented.

1 Content

Deterministic design optimization approaches are no
longer adequate for the development of industrial high
technology products. Product and process designs of-
ten push to the envelope of physical limits to improve
performance. In this regime uncertainty originating
from fluctuations during fabrication and small distur-
bances in system operations severely impacts product
performance and quality. Design robustness becomes
a key issue in optimizing industrial designs.

The design phase of a product or system is char-
acterized by having no direct interaction with data.
Here, the methods of uncertainty quantification try to
predict confidence intervals for the behavior in the
phase of operation. Also optimization and keeping
quality limits for products and systems plays an im-
portant role in the design phase. Here, special stochas-
tic optimization schemes and reliability analysis must
be developed. For an industrial application they have
to be designed such that as less function evaluations
as possible are needed. The phase of operation is char-
acterized by the interaction with data. For this phase a
main task is the callibration of models with incom-
plete and noisy data. Here, the Bayesian concepts
come into play.

We present challenges and solution approaches
implemented in our robust design tool RoDeO ap-
plied to turbo charger design. In contrast to electric-
ity generating turbines, turbo chargers have to work
efficiently not only for one operating point, but for
a wide range of rotation frequencies. High computa-
tion times for 3D aerodynamic (CFD) and mechan-
ical (FEM) computations, for large sets of frequen-
cies, are a severe limiting factor even for deterministic
optimization procedures. Furthermore constrained de-
terministic optimization cannot guarantee critical de-
sign limits under impact of uncertainty during fabri-
cation. Especially, the treatment of design constraints
in terms of thresholds for von Mises stress or modal
frequencies become crucial. We introduce an efficient
approach for the numerical treatment of such absolute

reliability constraints that even do not need additional
CFD and FEM calculations in our robust design tool
set.

A second application concerns the wheel set of a
train. For this component (which is the most sensitive
part of a train) a life cycle analysis is performed. In
real life, such a component is faced by scattering outer
impact and abrasion and thus, with a certain probabil-
ity, the design leads to finite time fatigue resistance
in spite it has been designed for infinite time. The
underlying physics are the laws of fracture mechan-
ics and crack growth. The failure criteria is the crack
size exceeding a given length. The proposed stochas-
tic method is in particular suited for CPU time inten-
sive and large scale physical models. Based on these
life time computations also inspection planning can
be considered. In doing so we assume that all com-
ponents are replaced if a crack is detected. The prob-
ability of detecting a crack during inspection is itself
a random number. Knowing the costs for replacement
of components, loss due to the outage during inspec-
tion etc., optimal inspection schemes can be derived.

An outlook for further design challenges concludes
the presentation.
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Sebastian Schöps12, Roland Pulch1, Andreas Bartel1, and Herbert De Gersem3

1 Chair of Applied Mathematics and Numerical Analysis, Bergische Universität Wuppertal, Gaußstraße 20, D-42119
Wuppertal, Germany {schoeps,bartel,pulch}@math.uni-wuppertal.de,

2 Chair of Electromagnetic Theory, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany
3 Wave Propagation and Signal Processing Research Group, KU Leuven, 8500 Kortrijk, Belgium
herbert.degersem@kuleuven-kulak.be

Summary. The startup of most electrical machines ex-
hibits a strong nonlinear behavior due to saturation. In prac-
tice, the underlying nonlinear saturation curve is modeled
according to measurement data that typically contain errors.
The electromagnetic fields and in particular the inrush cur-
rents inherit this uncertainty. In this paper, we propose a
specific stochastic model (BH-curve) to describe uncertain-
ties and we demonstrate the use of generalized polynomial
chaos for the uncertainty quantification of these inrush cur-
rents. This requires time stepping of systems of nonlinear
partial differential algebraic equations that result from the
coupling of field and circuit systems.

1 Introduction

Efficient design of electric machines (transformers,
actuators, generators etc.) requires insight into the de-
vice’s electromagnetic field distribution. Often, the
available inputs, e.g. material data, include unknown
errors for example due to measurements. The influ-
ence of these errors can be characterized by uncer-
tainty quantification. In the mathematical models, the
corresponding parameters are substituted by random
variables to describe the uncertainties.

In this paper a transformer, modeled by the mag-
netoquasistatic approximation to Maxwell’s partial
differential equations (PDEs), is considered. This sys-
tem is coupled to a network model of an electric cir-
cuit given by a system of differential algebraic equa-
tions (DAEs). The coupling is necessary in order to
to simulate the startup phase where the highest inrush
currents can be observed. To account for the measure-
ment errors, the material curves include (random) pa-
rameters, such that the time-dependent solution of the
PDAEs becomes a random process.

Uncertainties in the material parameters of mag-
netoquasistatic problems have been studied before but
only considering linear material laws in frequency do-
main, e.g., [2, 3, 11]. In this paper we do not propose
to model the material laws as uncertain, but the un-
derlying measurement data. This allows for a natural
choice of the probability distribution.

The stochastic model can be solved by a quasi
Monte-Carlo simulation, for example. We use the gen-

primary coil

secondary coil

steel core

air

Fig. 1: 2D model of a transformer, taken from [9].

eralized polynomial chaos (gPC), see [1, 6, 12], in the
numerical simulation to investigate how this approach
behaves. A stochastic Galerkin method results in a
larger coupled system of DAEs, cf. [10]. To illustrate
the modeling and the simulation, we discuss a 2D fi-
nite element discretization of a transformer.

2 Field Model

In the low-frequency regime the electromagnetic field,
i.e., the eddy current problem, is typically described
in terms of the magnetic vector potential A (MVP),
with magnetic flux density B = ∇×A, on a computa-
tional domain by the curl-curl equation

κ
∂A
∂ t

+∇×
(

ν∇×A
)
= Jsrc (1)

with conductivity κ and nonlinear reluctivity ν . In our
model, ν = ν(∇×A,Y) may depend on random vari-
ables Y to account for measurement errors. The sys-
tem is equipped with boundary and initial conditions
for A. The material parameters are piecewise constant
in all subdomains, only for ferromagnetic materials
(e.g. the steel core in Fig. 1) the Brauer model, [4], is
chosen to account for nonlinear saturation

ν(B,Y) = k1(Y) · exp
(
k2(Y) · |B|2

)
+ k3(Y) , (2)

where the model parameters ki are fitted from mea-
surement data and thus depend on the errors described
by Y.
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The circuit coupling is established by identify-
ing parts of the computational domain as branches in
the circuit. Typically for coils the stranded conduc-
tor model is used and for massive bars the solid con-
ductor model is feasible, [5]. In the case of a number
of Nstr stranded conductor models (i.e., spatially re-
solved field elements), the excitation from the circuit
is imposed on the field by the source term

Jsrc =
Nstr

∑
k=1

χkik , (3)

where the winding functions χ spatially distributes
the corresponding currents i. To obtain current/volt-
age relations for each field element, additional cou-
pling equations are needed, e.g.∫

Ω

χk ·
∂A
∂ t

dV = vk−Rkik (k=1,. . . ,Nstr) (4)

with the DC resistances R for the windings. Hence,
given voltage drops v, the system (1-4) defines A, i.

3 Uncertainties in the Measurement

The material parameter ν is implicitly given by mea-
surements of the BH-curve (Bi,Hi), for i = 1, ...,N.
The Brauer material model (2) can be fitted either by
a nonlinear least squares algorithm, as e.g. in [8], or
less elegantly by selecting 3 measurement points and
computing the reluctivity function that fulfills

Hi = ν(Bi)Bi

exactly where we choose the points i = 1,2,3 with-
out loss of generality, e.g. [7]. We follow the second
approach to keep the parameter space small.

The field strength H is assumed to be affected by
a measurement error:(

Bi,Hi ·Yi

)
for i = 1,2,3

where Yi is normally distributed with mean µ = 1 and
standard deviation σ = 0.1.

We propose to quantify the impact of the perturba-
tions above on the currents i in (4) by the generalized
polynomial chaos.

The transformer model as depicted in Fig. 1 has
been simulated for 100 realization of the above in-
troduced normally distributed random variables. The
results are shown in Fig.2. The uncertainties cause de-
viations of up to 20A in the primary inrush current.

In the full paper the computation of the expected
values and the variance of the currents are discussed
in more detail and using different uncertainty quan-
tification techniques.
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Summary. This paper reports on the simulation of an on-
load tap-changer in a power transformer. The electric fields
are computed and resulting breakdown voltages are esti-
mated by using the streamer criterion. The environment of
the on-load tap changer its taken into account by model-
ing tap leads in detail as well as transformer windings. The
goal of the investigations is to justify standard design and
test-procedures which assume a low dependency of the in-
terior dielectric properties of the on-load tap-changer on the
surrounding.

1 Introduction

On-Load Tap-Changers (OLTCs) are devices which
permit the change of the turn ratios of transformers,
allowing voltage regulation or phase shifting under
load without interruption.

Power transformers equipped with OLTCs have
been main components of electrical networks and in-
dustrial applications for nearly 80 years [2, 4].

One crucial criterion for the selection of an ad-
equate OLTC for a certain transformer or application
is its insulation level. Generally, the dielectric strength
depends on the whole system, i.e. the transformer, as
well as the connection-leads and the OLTC. However,
usual test-procedures by OLTC manufacturers are not
done within a transformer but on a separate OLTC.
Also during design the influence of leads and wind-
ings on the internal OLTC insulation is usually ne-
glected. This gives rise to further investigations jus-
tifying this approach. Therefore, a typical system is
simulated by computing the electric field and break-
down voltages with and without windings and tap-
leads.

2 Finite Element Simulation

For simulation half of the core and the tap wind-
ings of the transformer phase nearest to the OLTC
are modeled. The OLTC itself is represented by its
lower part—the tap selector. After several simplifica-
tions the CAD-data of the tap selector are directly im-
ported into the simulation software [1]. The leads are
created manually. Finally the transformer tank is built
as a surrounding box.

 

Fig. 1. Magnitude of the electric field of the total arrange-
ment. Red colored parts of the plot are above 1kV/mm.

Here, we consider AC stresses. Hence, the elec-
tric field is computed for the electrostatic case, i.e. we
solve

∇ · (ε ∇φ) = 0 in Ω , (1)

where Ω is the non-conductive domain, applying con-
stant potentials φ = φ0 on Dirichlet boundaries rep-
resenting grounded and stressed electrodes and the
transformer tank.

For the calculation 2nd order, isoparametric finite
elements are used. The result of a computation with
22.6 million unknowns is shown in Fig.1.

3 Dielectric Breakdown Calculation

Breakdown in oil cannot be described by one coher-
ent theory as in gas. To explain the main mechanisms
two basic approaches are used: one is an extension of
gaseous breakdown, the other one assumes that break-
down is caused by bridges of fibrous impurities.

To calculate the breakdown voltage in inhomoge-
neous electric fields different methods can be used,
see e.g. [3,5]. The calculation method we use is based
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on the streamer criterion along a critical path C∫
C

α(|E(x)|)dlx ≥ k , (2)

where α is the effective ionization coefficient, E the
electric field and k defines the number of electrons
necessary for breakdown. With an exponential equa-
tion for α and the introduction of a normalized elec-
tric field e(x) := |E(x)|/U , (2) can be solved as in [3]
for the breakdown voltage

Ub = (1mm)1/z ·
(∫

C

(
e(x)
E0

)z

dlx

)−1/z

(3)

with constants E0 = 15kV/mm and z = 4.2. These
constants are derived from measured breakdown data
of uniform fields.

 

Fig. 2. A subset of evaluated critical lines in the tap selector

The streamer criterion (2) has to be evaluated
along critical paths, which for breakdown in oil gaps
are fieldlines starting at electrodes with high electric
field stresses. Since the most critical fieldline does not
necessarily start at a local field maximum many field-
lines have to be evaluated, some of them are shown
in Fig. 2. The most critical path and the associated Ub
is determined by finding the minimum over all calcu-
lated voltages.

4 Influence of the Tap Leads and
Windings

To investigate the influence of the transformer and the
leads on the dielectric strength of the OLTC three dif-
ferent systems are simulated, see Fig. 3. Field values
along several lines parallel to the tap selector axis are
compared. In Fig. 4 field values along two of these
lines are shown. One line represents a region with low,
the other one a region with high electric stresses.

In regions with low fields there is a significant in-
fluence of the transformer and the leads, but in regions
with high field stresses, which are critical concerning
dielectric strength, the differences are maximum 10%.
Regarding the calculated breakdown voltages the de-
viation is even less than 1%.

Fig. 3. Different geometries. Left: Tap selector with leads
and transformer windings. Middle: Tap selector and wind-
ings. Right: Only tap selector

  

Fig. 4. |E| comparing all geometric arrangements, region
with low fields (left), region with high fields (right)

5 Conclusion

It has been shown that for the investigated typical ex-
ample the influence of the transformer and the tap
leads on the internal OLTC insulation is small enough
to neglect them during design optimization and test-
procedures.
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Summary. As optical devices get much smaller than the
wavelength of the operating light, local material models for
metallic structures like the Drude model and the Lorentz
model become inadequate to describe accurately the light-
matter interactions. To overcome this, a sophisticated non-
local hydrodynamic Drude model has been proposed. We
discuss a weak formulation of the nonlocal hydrodynamic
Drude model in the frequency domain and apply the finite
element method for scattering and propagating mode prob-
lems to demonstrate the dramatic impact of non-local ef-
fects on the device characteristics.

1 Introduction

The dispersive material properties of plasmonic struc-
tures are usually described by the Drude model and
the Lorentz model. These material models take into
account spatially purely local interactions between
electrons and the light. Recent investigations have
shown that these local models are inadequate as the
size of the plasmonic structure becomes much smaller
than the wavelength of the exciting light [1, 2]. To
overcome this, a sophisticated nonlocal material model
is required, such as the hydrodynamic model of the
electron gas [3].

The hydrodynamic model is formulated by cou-
pling macroscopic Maxwell’s equations with the equa-
tions of motion of the electron gas. This gives rise to a
hydrodynamic polarization current. Considering only
the kinetic energy of the free electrons, it yields the
nonlocal hydrodynamic Drude model, which is given
in frequency domain by a coupled system of equations

∇×µ
−1
0 (∇×E)−ω

2
ε0εlocE = iωJHD, (1)

β
2
∇(∇ ·JHD)+ω(ω + iγ)JHD = iωω

2
p ε0E, (2)

where E is the electric field, JHD is the hydrodynamic
current, εloc is the relative permittivity due to the
local-response, β 2 is a term proportional to the Fermi
velocity, γ is the damping constant, and ω2

p = e2n0
ε0me

is the plasma frequency of the free electron gas, c.f.
[6, 7].

The hydrodynamic current is non-zero only in a
region Ωm filled with metal. We assume that Ωm is
bounded and contained in the computational domain
Ω . Transparent boundary conditions such as PML
(Perfectly Matched Layers) are required to model the
coupling of the light field with the exterior domain
[9].

2 Weak formulation

Appropriate Sobelev spaces for the electric field E
and the hydrodynamic current JHD are H(curl,Ω) and

H0(div,Ωm) = {JHD ∈ (L2(Ωm))
3 |

∇ ·JHD ∈ (L2(Ωm))
3, n ·JHD = 0 on ∂Ωm},

respectively. This restricts the hydrodynamic current
to the metallic domain, and imposes a zero normal
component on the boundary of the metal.

One can use textbook Nédélec finite element spaces
to discretize H(curl,Ω) and H0(div,Ωm), leading to
a consistent discretization of the problem, fulfilling
the required boundary and material interface condi-
tions [8, Ch. 5].

Special geometries such as z-invariant structures
or with a rotational symmetry, can be treated as in the
standard Maxwell case. This allows for the computa-
tion of plasmon-polarition waveguide modes of a z-
invariant structure on a 2D cross-section domain. In
this case it is assumed that the electric field and the
hydrodynamic current depend harmonically on z :

E(x,y,z) = E(x,y)eikzz,

JHD(x,y,z) = JHD(x,y)eikzz

Replacing all z−derivatives in the coupled system (1), (2)
with ikz yields a quadratic eigenvalue problem for the
propagation constant kz.

3 Numerical examples

3.1 Cylindrical plasmonic nanowires

We validate the present approach by simulating a test
case of cylindrical nanowire as in [1], for which an
analytical solution based on Mie theory is available.

Consistent with the observations in [1], peaks due
to nonlocal interactions are present only beyond the
bulk plasma frequency, c.f. Fig. 1. The positions of
the surface plasmon resonance and the nonlocal hy-
drodynamic Drude resonances agree very good with
the analytical Mie results.
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Fig. 1. Simulation results for the normalized scattering
cross section σext of the cylindrical nanowire in [1]. The
curves show comparison of the numerical finite element so-
lutions for the nonlocal and the local hydrodynamic model
with the corresponding analytical solutions based on Mie
theory.

3.2 V groove channel plasmon-polariton
resonances

To demonstrate capability of the method to handle
an arbitrary shaped geometry, we simulate a channel
plasmon-polariton (CPP) waveguide with a V groove.
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l2

w1 w2
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Fig. 2. Effect of the nonlocal material response on the reso-
nance modes of V groove CPP waveguide. The waveguide
parameters are: l1 = 7 nm, w1 = 1 nm, a groove of length
l2 = 0.7 nm, width w2 = 0.7 nm is placed in the center.
The material and the hydrodynamic parameters are taken as
in the case of cylindrical nanowires in [1]. The sharp cor-
ners of the waveguide are rounded with corner radius of 0.1
nm. Resonances are excited by a unit amplitude, x-polarized
plane wave propagating in the direction of minus y-axis.

We consider a V groove configuration as shown
in clip of Fig. 2. First we simulated it for the local
Drude model. As seen from the dashed curve in Fig. 2,
several resonance modes are excited. When this set-
ting is simulated with the nonlocal Drude model,
the mode spectrum changes significantly (solid-line
curve). Some of the local Drude model modes such as
at ω/ωp = 0.306332 and ω/ωp = 0.80262 experience
small shifts towards high frequency, whereas others

like at ω/ωp = 0.466485 and ω/ωp = 0.605087 un-
dergo noticeable shifts towards high frequency. As
in the case of the cylindrical nanowires, also for the
V groove waveguide a completely new set of reso-
nances appear at the frequencies beyond the plasma
frequency. For the present simulation setting, some
of these hydrodynamic resonance modes are more
prominent than the higher order waveguide resonance
modes. It gives the indication that the modal proper-
ties of the CPP waveguides change significantly with
the inclusion of nonlocal effects.
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Summary. Battery finite element thermal model is reduced
using moment matching method and coupled with electri-
cal cell models at the system level in order to have accu-
rate and fast simulation for designing management systems.
A switching method between reduced order models is pre-
sented to evaluate different cooling conditions of the battery
pack.

1 Introduction

Battery performance is direct related to operating tem-
perature [1] due to influences in the electrochemical
behavior, specially for Lithium ion types. High tem-
perature can initiate exothermic side reactions that
cause self heating, and a potential damage. At low
temperatures slow diffusion of Lithium ions can cause
saturations at the electrodes that results in higher in-
ternal electrical resistances [2], in other words power
is influenced. Battery life is also affected by tem-
perature. For calendar life (only storage), internal re-
sistances can increase 30% more if temperatures are
raised from 30◦C to 55◦C [3]. Hence an efficient and
accurate thermal management is necessary.

For an electro-thermal battery model first we need
a temperature dependent electrical battery model which
is also capable to describe heat losses. Heat losses
from a battery enter into the thermal subsystem where
temperature distribution is evaluated. Temperature in-
fluences electrical properties of the battery as well as
its power dissipation. The joint simulation of an elec-
trical and a thermal subsystem can therefore be re-
ferred as electro-thermal simulation, Fig. 1 . A prac-
tical problem is related to the fact that finite elements
are usually employed to develop a thermal model of
the battery pack. Such models are high dimensional
and incompatible with system simulation as its tran-
sient simulation takes too much time. The develop-
ment of a compact thermal model based on a finite
element model is therefore necessary as an intermedi-
ate step.

2 Model Order Reduction

After the discretization of a finite element transient
thermal model one get a system of ordinary diferential
equations in the following form:

Fig. 1. Electro-thermal coupling at the system level applied
to a battery pack

Eẋ+Kx = f (1)

Where E is the heat capacity matrix, K is the heat con-
ductivity matrix, and the state vector x contains the
degrees of freedom, DOF, which for thermal problems
are the node temperatures. For model order reduction,
MOR, the concept of input/output is introduced. The
load vector f(t) is divided in constant vectors bi and
in time functions u(t). Constant vectors transfer the
time functions to specific degrees of freedom.

f(t) = ∑biu(t) (2)

At the system level there is no need of the complete
state vector x but just a part of that, named y. The
relation between them is defined by the output matrix
C:

y =Cx (3)

The idea of model order reduction is to reduce the di-
mension of the state vector and preserve the dynami-
cal behavior of the input/output relations [4]. Mathe-
maticians and engineers developed [5] different tech-
niques for model reduction and some of them use the
projection idea

x =V z+ ε (4)

The projection matrix V approximates the state vec-
tor x with a few of degrees of freedom z. Neglecting
the approximation error ε the original state vector is
described in the sub-space defined by matrix V . The
reduced order model is found by projecting the eq. 1
into the lower sub-space:

V T EV ż+V T KV z =V T BVu (5)

y =CV z (6)

Among existing methods, the present work focus in
the moment matching via Krylov subspace. The mo-
ment matching means after transforming the dynamic
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system into Laplace domain, in such that lower-order
system have the same first derivatives in the Taylor ex-
pansion around expansion points. A particular Krylov
subspace finds the projection and the reduced order
model matches the first moments automatically.

In this work first we show how a thermal battery
pack finite element model is reduced to system level
and coupled with electrical battery cell model. Sec-
ond we explore a model order reduction switching be-
tween two reduced models applied to the battery pack
model.

3 Electro-thermal coupling at the system
level

The battery pack thermal model contains four battery
cells that are cooled by air flow. The model is 3D and
build in ANSYS. Fluid channels are modeled with 1D
elements (FLUID116) and coupled with the thermal
elements by a convection boundary condition. For the
reduced order model, ROM, inputs are defined as the
heat generation per battery cell and outputs are the
temperature at cell center. Fluid operation conditions
are constant.

The model reduction is done with the tool MOR
for ANSYS with 10 DOF’s per input resulting a di-
mension of 40 in the reduced model. The coupling is
done with electrical cell model in a system level envi-
ronment, ANSYS Simplorer [6], according to fig. 1.
The electro-thermal coupled model is then used to
evaluate the battery thermal management in a more
accurate way since more realistic temperatures are
predicted by using the ROM. In the other side better
heat generation loads can be calculated at the system
level.

4 Switching reduced order models

One limitation of the battery pack reduced model in
section 3 is a fixed fluid cooling velocity. In an ac-
tive cooling a control system is necessary, and for that
the ROM should have fluid velocity as input. One can
solve this in two ways, by using parametric model re-
duction or by switching different reduced order mod-
els. We studied the second methodology.

The fluid velocity has two contributions in the
model: convection transport of heat by the fluid (mass
flow) and the heat transfer coefficient (convection
BC). Both quantities after discretization are in the K
matrix from eq. (1). In this context we generate one
reduced model for each desired velocity (we assume
all channels have the same velocity) and switch be-
tween the ROM’s at the system level.

At every switch event the reduced state variables
z must be initialized and this is done based on the
last value of the previous reduced model assuming the

equality of the full state vector x from eq. (4) as the
following:

VIzI + εI =VIIzII + εII (7)

zII =V T
II VIzI (8)

Results show that switch from a non-zero fluid ve-
locity to a case with zero velocity is not successful
since state variables from the two ROM’s at switching
event have differences in the order of 30%. Behavior
that may be explained by a too different K matrix,
what makes the projection from eq. (8) not accurate
enough.

When the change of fluid velocity is not to zero,
but a value up 1000 times, the switching transition is
successfully smooth with differences in the states vec-
tors in the order of 0.05%. Absolute values are also
good by comparing with the full solution obtained
from ANSYS, see fig.2. Differences are smaller than
line thickness.

Fig. 2. Temperature rise values from a heat generation step
response with a ROM switch at instant 3600s, fluid velocity
is reduced by a factor of 1000.
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Summary. Metamaterials, usually composed of large 

arrays of coupled resonators, have been studied mostly 

for high frequency applications. However, they provide 

an alternative to conventional shielding techniques at 

very low frequencies, i.e. 50-60 Hz. In this work, we 

show how to analyze and design such metamaterials 

and we evaluate the effect of the polarizabilities, the 

geometric arrangement and the number of resonators 

using quasi-static approximation to shield magnetic 

field.  
 

 

1 Introduction 
 

Metamaterials are artificial structures, which 

enable naturally unavailable electromagnetic 

properties and engineering of them. 

Metamaterials have been studied for years 

extensively, mostly aiming for optical frequency 

applications. However, metamaterials also have 

the potential to be used at very low frequencies, 

such as the shielding of magnetic field at power 

frequencies. 

 

 A metamaterial is usually composed of coupled 

resonators and shows complex behaviour. This 

complication brings the need for simulation and 

optimization tools. At very low frequencies, the 

resonators, which are the basic unit of 

metamaterials, are simple LC resonators formed 

by lumped circuit elements, i.e. inductors and 

capacitors. Shielding may be obtained mainly by 

the following mechanism: The incident magnetic 

field induces currents in the inductors which then 

loads the connected capacitors. In [1], it has been 

shown that it is possible to use metamaterials to 

shield magnetic field at very low frequencies.  

 

In this paper, the effects of the polarizabilities 

and the geometric arrangement of resonators are 

analyzed for the shielding application whereas 

the number of LC resonators is considered as a 

parameter to be kept low, because of high costs.  

 

2 Design 
 

As shown in [1], metamaterials are naturally 

anisotropic materials and this gives the possibility 

to obtain high shielding factors. Electromagnetic 

properties of metamaterials such as effective 

permeability can be obtained by effective 

medium approximations. To be able to use 

effective medium approximations, there must be 

a high density of LC resonators in the 

metamaterial block. One of the discussed points 

in this work is that although decreasing the 

number of LC resonators prevents us from using 

these approximations, it is still possible to obtain 

high shielding factors. In this case, the 

metamaterial becomes a set of ‘meta-sheets’, as 

illustrated in Figure 1. The shielding of a meta-

sheet of which the coil axes are oriented in the 

direction of the source magnetic field (i.e. x 

direction in Figure 1) is realized by opposing 

magnetic field produced by LC resonators.  The 

shielding of such a sheet is shown in Figure 2. 

The LC resonators are ideal (no resistance) and 

the meta-sheet is inhomogeneous.  

 

 
 

Figure 1: A meta-sheet, which is composed of LC 

resonators. B0 shows the source magnetic flux 

density vector and is in x- direction where as the 

meta-sheet is in y-z plane. 
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3 Numerical Method 
 

The LC resonators are modelled by current loops. 

The magnetic field of a current loop is given in 

[2].  The currents in LC resonators are obtained 

by equating the magnetic flux density to zero at 

some test points in the region to be shielded and 

this results in a linear matrix equation (see 

Equation (1)) [1].  ,' ji kB is the k  component of 

the magnetic flux density produced by the 
thj current loop with unit current at the 

thi  test 

point. ,oi kB  is the source magnetic flux density 

and jI  is the current in the 
thj  loop. 
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By using more test points than necessary for the 

linear matrix equation, the problem turns into the 

optimization of vector C, which is formed by the 

currents in the loops (See Equation (1) and (2)) 

[1], [3]. 

 

       
2

2

1
min

2C
BC D               (2) 

 

Putting additional coils with axes are oriented in 

y and z directions, the shielding can be improved 

by also trapping the magnetic field, similar to the 

shielding by high permeability materials. 

 

 

 

 

 

 
 

Figure 2: Shielding of an inhomogeneous meta-

sheet. The color map shows the magnetic flux 

density in dB scale at z=0. The magnetic field 

source is a coil located at (0,0,0) and the meta-

sheet is located at x=50 cm. 

 

4 Conclusions 
 

Metamaterials can be used to shield magnetic 

field at very low frequencies. The number of LC 

resonators can be decreased by using meta-sheets 

and the shielding characteristic can be improved 

by modifying polarizabilities and the geometric 

arrangement of resonators. A numerical method 

for the design of meta-sheets has been presented. 

Since this method is based on a linear matrix 

equation, it is efficient and fast. 
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Summary. An hp-adaptive Discontinuous Galerkin method
for time-domain electromagnetics problems is proposed.
The method allows for arbitrary anisotropic refinements in
the approximation order p and the mesh step size h regard-
less of the resulting level of hanging nodes. The adaptation
process is guided by so-called reference solutions [14, 15],
which are employed for estimating the solution error and
finding the best type of refinement.

1 Introduction

In this article, we are concerned with solving the
Maxwell equations for electromagnetic fields with ar-
bitrary time dependence in a three-dimensional do-
main Ω ⊂ R3. They read

∇×E(x, t) = − ∂

∂ t
µ(x)H(x, t), (1a)

∇×H(x, t) = − ∂

∂ t
ε(x)E(x, t)+J(x, t), (1b)

with the spatial variable x ∈Ω and the temporal vari-
able t ∈ [t0,T ] ⊂ R subject to boundary conditions
specified at the domain boundary ∂Ω and initial con-
ditions specified at time t0. The electric and magnetic
field vectors are denoted by E and H, J denotes the
electric current density. In (1), we assumed resting
heterogeneous, linear, isotropic, non-dispersive and
time-independent materials. The magnetic permeabil-
ity and dielectric permittivity µ and ε for this case are
scalar values depending on the spatial position only.

For discretizing (1), we employ the discontinu-
ous Galerkin (DG) method [1, 2]. Nowadays, the DG
method has gained wide acceptance as a numerical
method, which combines the key features of accuracy
and flexibility. Its flexibility stems from the highly
localized character of the numerical approximation.
This renders the method specially suited for time-
domain problems as well as for applying adaptive
mesh refinement. In particular, the method can eas-
ily deal with meshes with hanging nodes as stated
in [3], which makes it particularly well suited for hp-
adaptivity, i.e., the adaptation of the computational
mesh regarding the local mesh step size h and the lo-
cal approximation order p.

There is a well established body of literature on
the DG method for various types of problems avail-

able. It has been thoroughly investigated by several re-
search groups (see e.g. [3–5] and references therein).
Concerning Maxwell’s equations in time-domain, the
DGM has been studied in particular in [5–8].

This paper focuses on error controlled dynamic
hp-adaptation. In parts, it is a continuation of our
work in [13], where a general formulation of the
DGM on non-regular hexahedral meshes was intro-
duced. The first published work on h-, p- and hp-
adaptivity within the DG framework is presumably
[9], where the authors consider linear scalar hyper-
bolic conservation laws in two dimensional space. For
a selection of other publications see [10–12] and the
references therein. Our formulation allows for arbi-
trary anisotropic h- and p-refinements with very re-
laxed demands on the level of hanging nodes.

2 Automatic and dynamic mesh
adaptation with the DG method

The space and time continuous electromagnetic fields
are approximated on a tesselation T of the domain
of interest Ω . The approximation of the electric field
local to the element with index i reads

Ei(x, t) = ∑
p

ep
i (t)ϕ

p
i (x), x ∈Ti (2)

with the polynomial basis functions ϕ(x) of order
p ∈P = {0, ..,P} and the time-dependent vector of
coefficients e. The magnetic field is approximated re-
spectively.

It is specific to the DG method that the basis func-
tions are defined with element-wise compact support.
As a consequence the individual element-local ap-
proximations are not trivially connected, which in-
herently leads to a globally discontinuous approxima-
tion. Element communication is established via the
so-called numerical interface fluxes only, which ap-
pear in the form of element surface integrals in the
weak formulation of (1) (see e.g. [13] for details).
This high degree of localization turns mesh adapta-
tion into a purely element-local operation.

By defining proper finite element spaces associ-
ated with refined or reduced elements of h-, p- and
hp-type the best approximation in the L2-sense, f ∗, of
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Fig. 1. Cut view of the electric field magnitude having a 3D
Gaussian distribution (left) and corresponding anisotropi-
cally refined hp-mesh for an error tolerance of 10−9 in the
L2 norm. The mesh view makes use of the common tensor
product order visualization technique [14].

a DG approximation f given on an existing hp-mesh
is obtained by the orthogonal projection operator Π p

f ∗ = ∑
p

Π
p( f )Ti ϕ

p
i = ∑

p

(
ϕ

p
i , f
)
Ti(

ϕ
p
i ,ϕ

p
i

)
Ti

ϕ
p
i , (3)

where (u,v)Ti denotes the inner product
∫
Ti

uvdx on
the element Ti. In [13] it is shown that this projection
can be performed very efficiently, and that it guaran-
tees stability by respecting the electromagnetic energy
of the current field solution as a strict upper limit.

In order to perform automatic mesh adaptation,
the approximation error has to be estimated in an
element-wise fashion in a first step. In [13] an error
estimator based the size of the interelement jumps of
the DG solution was proposed. In a second step the
best type of adaptation, i.e., h-, p- and hp-refinement
and/or reduction, has to be determined. This informa-
tion is inferred from a local regularity estimation.

In this contribution, we apply the concept of ref-
erence solutions [14, 15]. A reference solution is a
numerically computed approximation, which is as-
sumed to be significant more accurate than the present
approximation. This can be achieved by performing
one isotropic h-refinement combined with increasing
the approximation order by one on the element un-
der consideration. The error of the present solution
is computed with respect to the reference solution,
which is also employed for finding the best refinement
out of a list of candidates. Figure 1 shows an exam-
ple of an anisotropically refined hp-mesh yielding an
approximation error below 10−9 in the L2-norm. We
adopted the common tensor product order visualiza-
tion technique of [14, 15], where the color of a trian-
gle including, e.g., an x-directed edge visualizes the
order Px.
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Summary. During atmospheric entries, vehicles can be ex-
posed to strong electromagnetic radiation from gas in the
shock layer. We propose and analyze silicon carbide and
glassy carbon structures to increase the reflection of radi-
ation. We performed numerical optimizations of photonic
structures using an evolutionary strategy. Among the con-
sidered structures are layered, woodpile, porous and guided-
mode resonance structures. The role of structural imperfec-
tions on the reflectivity is analyzed.

1 Introduction

Practical applications of photonic crystals (PhCs) are
diverse [1, 2]. An interesting, but not yet practically
realized, application of PhCs is as radiation shields for
atmospheric re-entry of space vehicles. Electromag-
netic radiation from ionized gas in the shock layer can
constitute up to 30-50% [3] of the overall heat flux for
lunar return trajectories, although for relatively short
times. For Jupiter entries, on the other hand, most of
the heating is radiative [4]. Therefore, in addition to
protection against convective heating, a reentry ther-
mal protection systems (TPS) should also be designed
for radiation shielding. Ideally, the design should be
tuned to the radiative spectra of a specific planet and
specific entry conditions.

One of the easiest way to design radiation shields
for atmospheric re-entry is with layered media [5].
Provided the two constituent materials possess a suf-
ficient dielectric contrast and low absorption, broad-
band radiation shields with high omnidirectional re-
flection can be designed [6]. However, applications
such as atmospheric re-entry impose many additional
constraints on the material properties (thermal, me-
chanical, etc.). Therefore, finding a suitable pair of
materials can be very demanding.

Currently, TPS for the most demanding atmo-
spheric re-entries are made of highly porous carbon
based materials. These materials, for example, PICA
(phenolic-impregnated carbon ablators), possess many
of the required thermal and mechanical properties.
However, these materials are strong absorbers of ra-
diation and therefore currently offer no protection at
all from radiative heating. On the other hand, if these
materials could be structured in such way that high

reflection is obtained, radiative heating of the vehi-
cle during re-entry could be reduced. We analyze the
potential of glassy carbon and silicon carbide as ra-
diation shields for Earth atmospheric re-entry. The
effects of structural imperfections on reflectivity are
also analyzed.

1.1 Optimization goal

The goal is to design a radiation shield that maximizes
the total reflection of normally incident unpolarized
radiation uν , shown in Fig. 1.

Fig. 1. (Red curve - experimental data of spectral radia-
tion distribution, obtained at atmospheric re-entry relevant
conditions [7] blue dashed curve - spectrum smoothed with
Gaussian window function of full width ∆ f = 10 THz.

Therefore, the function to be maximized is:

〈Ruν
〉=

∫
RΣuν dν

utot
, utot =

∫
uν dν , (1)

where RΣ is the total reflection of the incident unpo-
larized radiation:

RΣ = 0.5(Rs +Rp), (2)

where Rs and Rp are the sum of reflection efficiencies
for the s- and p-polarization, respectively:

Rs,p = Rs,p
0 +∑Ds,p

i , i =±1,±2, . . . (3)

here the summation is performed over the propagating
diffraction orders in the upper air half space.
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For numerical optimization, we used evolution-
ary strategy (ES) algorithms. Based on previous ex-
perience [8], it is very powerful for real parameter
optimization problems and outperforms genetic algo-
rithm, particle swarm optimization, and other meth-
ods in most cases. We used an (m+n) evolutionary
strategy with adaptive mutation for the optimization.
Here m is the initial number of parents and n is the
number of children created in each generation.

Some of the structures to be optimized are shown
in Fig. 2.

Fig. 2. (From left to right: guided mode resonance structure,
woodpile, porous-reflector
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0-20590-09, Materials for Infra Red Protection.
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Summary. We numerically optimize the light trapping effi-
ciency of a periodic, pyramid structured back metal contact
in thin-film amorphous silicon solar cells. Light propagation
simulations are carried out by rigorously solving Maxwells
equations in 3D space for a wide range of model geome-
try parameters. In using our optimization approach we have
identified nanostructure back reflector geometries that dis-
play a significant increase in short circuit current density
over flat back reflectors.

1 Introduction

Thin-film amorphous silicon based solar cells are an
attractive design for providing cost-effective and ef-
ficient solar energy. Amorphous hydrogenated silicon
(a-Si:H) can be deposited in thin layers on cheap sub-
strate materials such as glass or plastic offering low
fabrication costs suitable for mass production.

One of the major barriers to the widespread use
of a-Si:H solar cells is their increased defect den-
sity under light exposure the Staebler-Wronski (SW)
effect. To mitigate (SW) effects, low thickness ab-
sorber layers (in the range of a few hundred nanome-
ters) that exhibit a high electric field are typically
employed. Considering the large absorption length of
amorphous silicon near its bandgap, these thicknesses
necessitate light-trapping concepts for realizing effi-
cient thin-film silicon solar cells [1].

2 Methodologies

Within this work we optimize geometry parameters
of a periodic, pyramid structured back metal contact
in a model (p-i-n type) thin-film solar cell. Our goal
is to find optimal model parameters that considerably
increase the solar cells light trapping efficiency com-
pared to flat designs.

2.1 Finite element light propagation modeling

To judge the efficiency of different solar cell models
we compute short circuit current densities

Isc =
q
hc

∫
λmax

λmin

λ QE(λ )S(λ ) dλ (1)

Fig. 1. Sample CAD representation of the model (p-i-n
type) solar cell used (left) and vertical cut through a cor-
responding volume mesh (right). The computational do-
main is periodic in x,y directions; transparent boundary con-
ditions are realized by adaptive perfectly matched layers
(PML).

for the solar cell models under consideration. In (1) λ

denotes the wavelength, q the elementary charge, h is
Planck’s constant, c is the speed of light and S(λ ) is
the weighted sun spectrum (air mass 1.5 solar spectral
irradiance). For each solar cell model short circuit cur-
rent densities are computed over a wavelength range
of 350 to 900 nanometers.

Estimating Isc requires knowledge about the solar
cells quantum efficiency QE(λ ) defined as the ratio of
the number of generated charge carriers to the number
of total incident photons:

QE(λ ) =
1
Po

∫
1/2cn

4πk
λ

|E(λ ,r)2|dr. (2)

Here Po is the optical input power, n and k are the real
and imaginary parts of the complex refractive index
and integration is carried out in the intrinsic a-Si solar
cell layer.

E(λ ) in (2) is the electric field in the solar cells
absorber layer, which, considering the involved length
scales, needs to be computed by rigorously solving
Maxwell’s equations. For this purpose we employ a
frequency domain finite element method. To assure
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a high solution accuracy we use higher order shape
functions and adaptive perfectly matched layers for
realizing transparent boundary conditions [4].

2.2 Model discretization using CAD techniques

To avoid discretization errors that would pollute the fi-
nite element solutions, investigated solar cell geome-
tries need to be modeled and discretized with high ac-
curacies. Furthermore, to be able to apply optimiza-
tion algorithms for finding optimal back reflector ge-
ometries, it is essential that solar cell geometry mod-
els can be fully parameterized. For this purpose we
have developed computer-aided design (CAD) tech-
niques specifically tailored for the construction of pa-
rameterized nano-photonic device models.

A sample CAD representation of our model (p-i-
n type) solar cell is displayed in Fig. 1. It consists of
a nano-structured silver back contact deposited on a
plastic substrate, followed by 50 nm of Al:ZnO, 200
nm of a-Si:H and a final layer of tin doped indium ox-
ide. Edge rounding (fillet) is applied on sharp edges
of the model geometry to avoid spurious reflections.
The CAD model is parameterized by the period of the
structure (in x,y directions) and the base width of the
pyramids. In addition to these parameters other geom-
etry parameters are currently being investigated.

A hybrid meshing scheme is used to discretize
the model geometries with high quality structured/
unstructured tetrahedral cells. The periodicity of the
computational domain is automatically enforced dur-
ing volume meshing and prismatic cells are added for
realizing transparent boundary conditions with per-
fectly matched layers (Fig. 1).

So far material interface layers within the solar
cell stacks are modeled by extrusion of the pyra-
mid structured PET-Ag interface layer in positive Z-
direction (as displayed in Fig. 1). To achieve a more
accurate representation of the topography of the in-
dividual material layers, a level-set based topography
simulation method is currently being developed. The
method relies on the ballistic transport and reaction
model developed by [2] and employs the level-set
method to evolve interface layers [3].

3 Results

Our simulation results reveal that the employed pyra-
mid structured back-reflectors effectively increase the
light path in the absorber by (i) exciting photonic
waveguide modes in the absorber and (ii) coupling in-
cident photons to surface plasmon polaritons (SPPs).
Using our optimization approach, we have identified
nanostructure back reflector geometries that display a
significant increase in short circuit current densities
compared to a flat solar cell design with identical ma-
terial layer thicknesses.

Fig. 2. Short circuit current densities Isc computed for a
series of solar cell models with varying cell periodicities
and pyramid base widths. Displayed Isc values are consid-
erably larger than the value obtained for a flat back-reflector
(Isc = 10.2 mA/cm2).

Fig. 2 shows a map of computed short circuit cur-
rent densities Isc for a series of solar cell models with
varying cell periodicities and pyramid base widths. A
maximum value of Isc = 15.68 mA/cm2 was identi-
fied for a solar cell model with a periodicity of 480
nm and a pyramid base width of 450 nm, which is
considerably larger than the value obtained for a flat
back-reflector (Isc = 10.2 mA/cm2). Additional model
parameters are currently being investigated. Further-
more, other type of back-reflector geometries are go-
ing to be analyzed in the framework of this ongoing
research project.

Acknowledgement. The research presented here is the re-
sult of a multi-disciplinary, collaborative project headed by
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Summary. A high order fluid model for streamer dynam-
ics is developed by closing the system after the 4th mo-
ment of the Boltzmann equation in local mean energy ap-
proximation. This is done by approximating the high order
pressure tensor in the heat flux equation through the previ-
ous moments. Mathematical characteristics of the system is
studied. Then planar ionization fronts for negative stream-
ers in N2 are simulated with the classical streamer model,
MC-PIC particle model, and with the present higher order
model.

1 High order fluid model

Streamer discharges occur in nature and as well in
many industrial applications such as the treatment of
exhaust gasses, polluted water or biogas. They appear
when non-ionized or lowly ionized matter is exposed
to high electric fields. Here we present a high order
fluid model for streamer discharges, and we use it to
simulate planar ionization fronts for negative stream-
ers in nitrogen under normal conditions; and we com-
pare the results with those of the classical fluid model.

1.1 Model description

The high order model is derived by taking the first 4
moments of the Boltzmann equation, i.e., by multi-
plying the Boltzmann equation with the kth power of
velocity (k = 0,1,2,3) and integrating over velocity
space. In principle, the set of moment equations is in-
finite, but we consider only electron density (k = 0),
momentum (k = 1), energy (k = 2) and energy flux
(k = 3). The system is truncated in the energy flux
equation (4) by approximating the high order pressure
tensor by the product of lower order moments and by
introducing factor of parametrization β . As a result
the hydrodynamical formalization of the streamer dy-
namics in 1D is described by the nonlinear system of
equations

∂tu+A(u)∂xu = F(u), (1)

where the primitive variables are

u = (n,nv,nε,nξ )T, (2)

the matrix A(u) is defined in following way

A(u) =


0 1 0 0
0 0 2

3m 0
0 0 0 1

−β
2ε2

3m 0 β
4ε

3m 0

 , (3)

and the source term is

F(u) =


nνI

nqE
m −nvνm

qEnv−n{νe
[
ε− 3

2 kT0
]
+∑

α

νeα εeα +νIεI}
5qE
3m nε−nξ νm

 .

(4)

Here n, v, ε and ξ are electron number density, av-
erage electron velocity, average electron energy and
electron energy flux, correspondingly. E is the elec-
tric field and T0 is room temperature. νm(ε) and νe(ε)
are the momentum and elastic energy transfer colli-
sion frequencies, νI(ε) is the ionization frequency and
νeα(ε) are the collision frequencies for inelastic pro-
cesses. As charge is conserved, the continuity equa-
tion for the ion density nion is

∂tnion = nνI , (5)

when the ions are approximated as immobile. Space
charge effects are taken into account through the Pois-
son equation

∂xE =
e
ε0
(nion−n) , (6)

where ε0 is the dielectric constant and e is the elemen-
tary charge.

Mathematical characteristics and numerical
solution of the system

Lemma 1. The system (1) is hyperbolic if and only if

β = 0 or β ≥ 1. (7)

In the case of β > 1, the system (1) is strictly hyper-
bolic.

Although the eigenvalues of (1) have a simple form,
the corresponding right and left eigenvectors are very
complicated, which makes it impossible to work with
them.
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The finite volume method is used to spatially dis-
cretize the system (1),(5),(6) on uniform control vol-
umes or cells Vj as follows:

Vj := [ j∆x,( j+1)∆x) , x j :=
(

j+
1
2

)
∆x, (8)

where j = 0,1, ...,M−1, ∆x = L/M is the spatial grid
size and L is the length of the simulation domain. To
approximate the spatial derivative in (1) we use the
second-order central difference discretization [1]. In
our numerical experiments we saw that this spatial
discretization approximates quite well the analytically
predicted front velocity for the minimal model [2].
The time derivatives are approximated with the Runge-
Kutta 4 method [1]. This is an explicit method, which
always has a bounded stability domain. In our case
the stability condition or CFL restriction is

β

√
2

3m
√

maxε
∆ t

2∆x
≤C, (9)

where C depends on the particular method and space
discretization. In our simulations we use the value
C = 0.1.

1.2 Particle model and classical fluid model

In essentially all numerical fluid models for stream-
ers in the past 30 years, except for [3, 4], the electron
density is approximated by a reaction drift diffusion
approximation

∂tn−∂x(µEn+D∂xn) = nνI , (10)

This model is called the minimal model; it implies a
local field approximation of reaction and transport co-
efficients.
As a second reference model we use the MC-PIC par-
ticle model from [5].

2 Results and discussion

Fig. 1 compares the results of the high order model,
the particle model and of the minimal model for the
same initial and boundary conditions and for the same
electric field ahead of the ionization front. A multi
term theory for solving the Boltzmann equation [6] is
used to calculate flux transport coefficients and mean-
energy dependent collisional rates required as an in-
put in fluid equations.

The following main conclusions can be drawn:
1) The overall front structure is the same, but the

particle model is much better approximated by the
high order model than by the minimal model.

2) That the mean electron energy ahead of the
front increases while the electric field is constant, was
also seen in Monte Carlo simulations before [2], but
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Fig. 1. Top: Electron density profile for the high order
model (dashed dotted line, blue), the particle model (solid
line, red) and for the minimal model (dashed line, green),
bottom: mean electron energy (dashed line, green) and elec-
tric field (solid line, blue) profiles in the high order model,
mean electron energy in the particle method (solid line, red).
The plots show the simulation for instant 0.7 ns for identical
initial conditions. The electric field ahead of the ionization
front is 145 kV/cm at standard temperature and pressure,
which corresponds to 590 Td.

not yet included in fluid models. The mean electron
energy behind the front where the electric field van-
ishes, is close to 1 eV, because energy relaxation is
slow in this region. This feature was not included in
fluid models before.

In summary, the new high order fluid model cap-
tures effects in streamer simulations that up to now
were only inherent in the more microscopic Monte
Carlo simulations. This is a step forward for long time
calculations.
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by STW-project 10751.
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Summary. Prediction of cooling by forced convection due
to corona-induced ion flow in an electro-hydrodynamic (or
EHD) simulation requires a reliable corona electrode model,
which has to be formulated as a boundary condition (BC)
to the EHD partial differential equations. We discuss and
compare four different BCs in the context of finite-volume
methods (FVM). It turns out that the optimum choice de-
pends on the given physical information.

1 EHD differential and numerical model

Corona discharge refers to field induced gas ioniza-
tion near an electrode, e.g., a thin wire (emitter), in
series with the dark discharge associated with the ion
drift towards counter electrodes (collector). The ion
motion induces a drag of the neutral gas, and can be
used to convection cool a heat source, which may be
the collector at the same time. The associated equa-
tions consist of the Poisson equation for the electric
potential φ , and the balance equations for the densi-
ties for ion number Np, mass ρ , momentum ρv, and
energy (written in terms of the temperature T ). In the
Boussinesq approximation, they read

−∇ · (ε∇φ) = qNp (1)

∂Np

∂ t
=−∇ ·

(
j
q

)
=−∇ ·

(
(bE+v)Np +a∇Np

)
(2)

∇ ·v = 0 (3)

Dv
Dt

= ν∆v−∇

(
p
ρ
−g ·x

)
+ fB + fEHD (4)

ρCV
DT
Dt

= k∆T + j ·E− fEHD ·v (5)

where ε is the electric permittivity, q the ion charge,
E = −∇φ the electric field, b the ion mobility, a
the diffusion constant, D•

Dt = ∂•
∂ t + v ·∇• the mate-

rial derivative for the velocity field v, ν the viscosity,
p the pressure, g the gravitational acceleration, fB =
β (Tref−T ) the buoyancy force, and fEHD = qNpE the
Coulomb force, assumed to be distributed over all gas
particles via scattering. The electric current density j
consists of drift, convection, and diffusion currents.

The system of coupled, nonlinear PDEs has to be
solved for given initial and boundary conditions. Prior
to discussing the latter, we summarize the global solu-
tion procedure. First, in a Gauss-Seidel-like approach,
the solution is determined progressively for the block

φ −Np, then for the block p− v and finally for T .
Because of the weak influence of each block to the
preceding ones, only one iteration per time step is
performed. Electrostatics equations are solved with
nonlinear formulation to reach convergence (for de-
tails, see [2]) while Navier-Stokes block is solved via
a SIMPLE-like projection method (λ (v) being a coef-
ficient depending on both the estimated velocity and
the grid). Here we sketch how this iteration is built:

n until
∫

Ω
(N(k−1)

p eφ (k,0)−φ (k,n) −N(k)
p )< tol.

l until ‖φ (k,n−1)−φ (k,n)‖∞ < tol.

s solve −∇ ·(ε∇φ (k,n))= qN(k−1)
p eφ (k,0)−φ (k,n)

,

linearized around φ (k,n−1)

l solve q ∂N(k)
p

∂ t =−∇ ·
(

j(φ (k,n),N(k)
p )
)

n solve momentum equation (4) for v(0)
n until

∫
Ω

∇ ·v( j) < tol.
l solve −∇ · (λ (v( j−1))∇p( j)) = ∇ ·v( j−1)

l correct v( j) = v( j−1)−λ (v( j−1))∇p( j)

n solve temperature equation (5)

2 Corona discharge boundary conditions

We restrict our discussion to the BC for Np at the
corona electrode, comparing four different BC types.
For the rest of the boundaries, instantaneous recom-
bination BC (n ·∇Np = 0) is applied at counter elec-
trodes, while in all other cases well-known standard
BCs can be used.

The first approach we present is the natural condi-
tion, namely imposing the normal flux jn associated to
(2) to be uniform; this approach is very accurate when
geometry is symmetric and one knows the actual cur-
rent from measurments, but has the drawback of be-
ing totally unpredictive. Nonetheless, this approach is
sometimes used with arbitrary geometries, defining an
active surface that emits the necessary current density.
The generally accepted Kaptsov’s hypothesis (see [5])
states that En := E ·n = Eon, namely the field remains
constant at the (virtual) electrode once the corona dis-
charge is triggered. A value for Eon can be computed
from Peek’s law (see e.g. [6], ch. 4) and allows to
define the active region as the part of the boundary
where En > Eon holds.

For having a predictive condition, instead, one
needs to somehow enforce a constitutive law linking
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Fig. 1. Gometries from [4] (left) and from [3] (right).

jn or Np with En. We choose to adopt the second, sim-
pler formulation, namely to impose Fi(En,Np) = 0 to
be satisfied on the boundary. Our first approach, given
in [1], is based on a simplified physical model of the
virtual contact which takes into account charge carri-
ers injected solely from the active surface (with a sat-
uration current density jsatH(En−Eon), where H(•)
is the Heaviside step function), and backscattered car-
riers (with current density given by−qNpw at the con-
tact, where w is a characteristic velocity). Neglecting
diffusion current at the electrode, this approach can be
interpreted as imposing the relation

F1(En,Np) = qNp(bEn−w)− jsatH(En−Eon) = 0 (6)

Choice for the parameters jsat and w needs to guaran-
tee that the injected charge can naturally force En =
Eon, otherwise current density saturates to jn = jsat
and space charge controlled current (SCCC) regime
is not reached anymore.

Our second approach is to model the boundary as
an ideal rectifying diode, in which no ion density is
flowing under the Eon treshold, while every Np value
is possible when En = Eon. Explicitly, this approach
is equivalent to enforce the following:

F2(En,Np) = Np

(
1− ( En

Eons
)β

)
= 0 (7)

β ∈ [0,1] being a smoothing factor. This relation
strongly enforces both Np to vanish in the other non
active portion of the electrode, and En to match Eon in
the active portion.

Our last approach assumes a constitutive relation
which is a more regular version for the former one:

F3(En,Np) = Np−Nref

(
exp
(

En
Eref

)
+1
)
= 0 (8)

where Nref and Eref are a device-off ion density and a
reference electric field. The choice of these two values
can thus be made independently from the particular
case (using e.g. air conductivity for Nref).

3 Results and conclusions

As examples, a wire-to-grid geometry [4] and a wire-
to-plate geometry [3] have been investigated (Fig. 1).

The former consists of a duct with a grounded
grid in the middle (both collectors), and an emitter
placed upstream. The Eon value is determined from
the experimental onset voltage (4 kV). Simulations
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Fig. 2. Comparison of the graphs on the Np−En plane de-
fined by the constitutive relations Fi(En,Np) = 0.
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show how the natural condition matches exactly the
experimental value, and the iterative condition as in
(7) still captures well the electrical behavior. One may
thus consider that in cases like this, even when lack-
ing measured currents, the ideal diode model is still
appropriate.

The latter geometry has a heated plate with a col-
lecting stripe and the emitter is lifted from the plate.
As shown in Fig 3, this case is not as well reproduced
as the former, due to the highly nonuniform En on the
electrode. This issue may be solved with a parameter
optimization, which has not yet been undertaken in
the present study. The current, being the most influen-
tial parameter for for the fluid dynamics and thermal
computing, was predicted with acceptable accuracy.
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Summary. This paper discusses an efficient mixed mode
simulation method for induction heating problems. For time-
harmonic inputs the electromagnetic part can be considered
in the frequency domain. This avoids the inefficient time
integration of high frequency signals. By leaving the heat
problem in time domain this approach leads to a frequency-
transient simulation with low computational costs. The cou-
pling is established by an average power transfer model.

1 Introduction

Inductive power transfer problems deal with electro-
magnetic fields that transport large amounts of energy.
Even small power losses can result in considerable
heating up [3, 5, 6]. The skin effect causes most heat
generation at material boundaries. Hence the temper-
ature considerably influences the material parameters,
e.g. the electric conductivity, and thus the electromag-
netic fields. This underlines the need for a mutual cou-
pling of the heat and electromagnetic field models.

A transient simulation of the coupled problem
often suffers from relative small time steps due to
high frequencies in the electromagnetic part. How-
ever, heating up is a comparatively slow effect. There-
fore simulations of large time intervals are necessary.
The small time steps in combination with long time
intervals induce high computational cost or make a
simulation even infeasible (multirate behaviour).

It is beneficial to reduce the computational effort
for solving the electromagnetic problem. In this paper
we discuss an adapted model that allows for a mixed
formulation: frequency domain analysis of the EM
problem and time domain for the heat problem, [2].
This approach is similarly implemented in COMSOL
Multiphysics, [4]. We focus on numerical analysis in
the framework of dynamic iteration, e.g. [1].

An model example from industry is used for nu-
meric results. KOSTAL describes with that the power
transfer by induction for an inductive charging sta-
tion. It will be used to charge batteries of electric cars.

2 Modelling

Electromagnetic fields are mathematically described
by a system of time-dependent partial-differential equa-
tions on a domain Ω . It reads in curl-curl formulation:

0 e

Heat

EM Field

H

via frequency domain

Fig. 1. Time windows τi, time steps due to dynamics (red
and blue arrows) and coupling scheme (black arrows).
Small time steps (red) are avoided in frequency domain.

ε
∂ 2A
∂ t2 +σ(T )

∂A
∂ t

+∇× (ν ∇×A) = Je, (1)

where the reluctivity ν and the permittivity ε depend
only on space r∈Ω , the electrical conductivity σ also
on temperature T , the external current density Je is a
given sinusoidal source and the magnetic vector po-
tential A(t) is unknown on t ∈ [t0, te]. For brevity the
space dependency r is always neglected. On the other
hand we have the heat equation

ρ c
∂T
∂ t

= ∇ · (k∇T )+Q, (2)

where the temperature T is an unknown function and
the mass density ρ , the heat capacity c and the heat
conductivity k depends on space and temperature.
The term Q is a source term. It is given by the power
loss of the electromagnetic field and couples (1) and
(2). If we neglect hysteresis losses, Q is described by

Q(A,T ) = σ(T )
∂A
∂ t
· ∂A

∂ t
− ∂A

∂ t
·Je . (3)

We equip (1)-(3) with boundary and initial condi-
tions at t0 and discretise it. However (1) requires very
small time steps for the fast varying signal Je. This
problem is addressed in the next section.

3 Averaging Power and Temperature

We split the time interval of interest [t0, te] in time
windows [τi,τi+1] according to the time scale of the
heat transfer, see Fig. 1. Since heat transfer is a rather
slow process, it is sufficient to consider only the aver-
aged power per time window that is generated:

Q̄i =
1

τi+1− τi

∫
τi+1

τi

Q(A(t),T (t)) dt (4)
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and similarly the temperature is averaged:

T̄i =
1

τi+1− τi

∫
τi+1

τi

T (t)dt. (5)

It follows for time-harmonic input signals Je

Q̄i = σ(T̄i)
ω2

2

∥∥∥Âc

∥∥∥2

c
+

ω

2
Im(Âc) · Ĵe, (6)

where ω is the angular frequency and Ĵe the amplitude
of Je and Âc is the complex fourier coefficient of the
solution for A = Âc e jωt of (1) with Je = Ĵe e j ω t .

We derive a simplified system consisting of a (1)
in frequency domain and a (2) in time domain:

( j ω σ(T̄i)−ω
2

ε)Âc +∇× (ν ∇× Âc) = Ĵe (7)

ρ c
∂T
∂ t
−∇ · (k∇T ) = Q̄i, (8)

where Q̄i is defined in (6) and T̄i in (5). Equation (7)
is equivalent to an average power transfer model of
(1). However, in frequency domain only a linear sys-
tem has to be solved instead of many time steps. This
approach exploits efficiently different time scales.

4 Co-simulation

We solve the system (6)-(8) iteratively, [1], In the fol-
lowing the subscript index i belongs to time step ti and
the superscript index (l) denotes the iteration step l.

( jω σ(T̄ (l)
i+1)−ω

2
ε)Â(l+1)

i+1 +∇× (ν ∇× Â(l+1)
i+1 ) = Ĵe

Q̄(l+1)
i+1 = σ(T̄ (l+1)

i )
ω2

2

∥∥∥Â(l+1)
i+1

∥∥∥2

c
+

ω

2
Im(Â(l+1)

i+1 ) · Ĵe

T̄ (l+1)
i+1 − hi

ρ c
∇ · (k∇T̄ (l+1)

i+1 ) = T̄i +
hi

ρ c
Q̄(l+1)

i+1

The co-simulation can be organized as shown in Fig.
3 for the special case where time step and time win-
dow sizes agree, i.e., hi = τi+1− τi.

In the full paper this algorithm is numerically
analysed and convergence of the inner loop is shown.
This converges to the average power and temperature
model from Sec. 3. In a second step it will be shown,
that this model converges to the original model from
Sec. 2 when the time steps turn to zero. In addition
the computational sequence of the subsystem will be
discussed. The results are verified by a 2D model of
the industry example, see Fig. 2.

init model
T (t0) = T0

i← 0

T (0)
i+1 ← Ti
l ← 0

Solve for Â(l+1)
i+1

Evaluate Q̄(l+1)
i+1

Solve for T̄ (l+1)
i+1

converged?

l← l+1 i← i+1

Āi+1← Ā(l+1)
i+1

T̄i+1← T̄ (l+1)
i+1

i← i+ 1

ti < tend

stop

yes

no

no

yes

Fig. 3. Co-Simulation
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The increasing complexity of electronic design needs
to be managed with effective optimization algorithms
and accurate statistical description of models in or-
der to maximize the performances and the reliabil- ity
of the electronic systems and minimize the tight time-
to-market constraints. New optimization algo- rithms
have to balance accuracy, robustness and com- puta-
tional effort. Typical electronic design problems are
computationally hard and require the handling of mul-
tiple, conicting, and non-commensurate ob- jective
functions having strong nonlinear interdepen- dence.
In this talk we present a simulation-based multi- sce-
nario and multi-objective optimization algorithm for
designing devices, analog mixed-signal circuits, and
systems-on-chip. We express the design problems as
large-scale constrained multi-objective optimiza- tion
problems (dened in a mixed integer-discrete- continu-
ous domain) for which a class of efcient al- gorithms
has been designed and implemented. The al- gorithm
scales gracefully with systems size and type; the frame-
work has been tested on several real-world devices,
circuits and systems. This framework satis- es the
constraints, optimizes the performances while min-
imizes plastic/silicon area, power consumption, en-
ergy and delay maximizing the overall yield. We re-
port on several applications of electronic system de-
sign:

1) at the device-level, we tackle the design of MES-
FETs, MOSFETs and Power MOSFETs;

2) at the circuit-level, we face the design of RF Low
Noise Amplier, Leapfrog Filter, Ultra Wideband
Low Noise Amplier, and Fully Differential Folded-
Cascode Op- erational Ampliers;

3) while at the system-level, we present the results
for a pipeline A/D Converter, a Re- ceiver front-
ends for UMTS and UWB Communica- tions and
a Multi Processor Systems-on-Chip.

The effectiveness and robustness of the proposed ap-
proach, as compared with the state-of-art of academic
and commercial methods, are demonstrated. The re-
sults show a signicant improvement in all the tackled
electronic design problems.
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Optimization of the efficiency of a photovoltaic cell by means of a
genetic algorithm

Giuseppe Alı̀1,2, Francesco Butera1, and Nella Rotundo1

1 Dipartimento di Matematica, Università della Calabria, Arcavacata di Rende I-87036, Cosenza, Italy
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Summary. We consider an optimization problem for a pho-
tovoltaic cell, modeled by the drift diffusion equations,
modified to include optical effects. In order to optimize the
efficiency of the cell, first we determine the most relevant
parameters, such as the number of fingers in a channel or
the initial concentration. Then we use a genetic algorithm
to determine the sets of parameters which optimize the effi-
ciency of the cell.

1 Introduction

The current efficienciency of photovoltaic cell pan-
els is around 20% [1]. Higher values of efficiency
(around 23%) can be achieved by selecting more ex-
pensive types of silicon crystals [2], but their use is
limited to those cases in which cost is not an issue.

By constrast, commercial panels often fail to reach
even the 20% limit of accuracy, falling closer to a
value around 15% [3]. Raising the efficiency of com-
mercial panels to values higher than 20% would be
an important goal, both scientifically and technologi-
cally. An immediate increase of the efficiency of so-
lar panels is possible by following two distinct paths:
selecting materials with higher Energy gaps and in-
creasing the area of the exposed solar cells.

In most commercial solar cells, the soldering con-
tacts and the connections between the wafers that
compose the cells themselves are on the same side of
the surface which is exposed to the sun. Moving the
contacts and the soldering connection on the back of
the wafers offers is one of the possible way to increase
the surface exposed to the sun. Solar cells constructed
using this technique are usually referred to as ”Back-
contact silicon solar cells” [4].

2 The photovoltaic cell model

We consider a simplified test model of a photovoltaic
cell, corresponding to a transversal section of a solar
panel. In order to include the effect of the number of
fingers in a channel, that is, the distance between two
fingers, we consider a block comprising two cells, as
in figure.

Back-contact silicon solar cell

1 Device structure

............................................................
.................................................... ........metal

metal

n+ n+

p p

p+ p+

1
Fig. 1. Geometry of the test photovoltaic cell

The cell is modeled by the drift-diffusion equa-
tions, implemented in the commercial simulator Sen-
taurus Device. Thus, we neglect all thermal effects,
and assume that two carriers are responsible for the
diode’s output current, that is, electrons with negative
charge −q, and holes with positive charge q. The be-
havior of the device in the test cell, denoted by Ω ,
is described in terms of number densities of electrons
and holes, denoted by n(x, t), p(x, t), quasi-Fermi po-
tentials for electron and holes, denoted by φn(x, t),
φp(x, t), current densities for electrons and holes, de-
noted by jn(x, t), jp(x, t), and electrostatic potential,
denoted by φ(x, t). These variables satisfy the follow-
ing drift-diffusion system [5],

−∇ · (ε∇φ) = q(N + p−n), (1)

−q
∂n
∂ t

+∇ · jn = qR, jn =−qµnn∇φn, (2)

q
∂ p
∂ t

+∇ · jp = −qR, jp =−qµp p∇φp, (3)

where (x, t) ∈ Ω × [t0, t1]. The densities n, p, are re-
lated to the quasi-Fermi potentials by relations de-
rived from the Fermi statistics,

n = niγn exp
(

φ −φn

UT

)
, p = niγp exp

(
−

φ −φp

UT

)
,

where ni is the intrinsic concentration, and γn, γp are
complicated functions of the unknowns, which re-
duce to 1 for Maxwell-Boltzmann statistics. In (2),
(3), N(x) is the doping profile, µn, µp are the mo-
bilities for electrons and holes, respectively, and R
is the recombination-generation term. For the mobil-
ities we use the PHUMOB model present in Sen-
taurus. We consider Shockley-Read-Hall and Auger
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2

recombination-generation terms, combined with a ra-
diative model. The system (1)–(3) is supplemented
with appropriate boundary conditions.

3 Optimization

Our goal was to maximize the efficiency of Back-
contact silicon solar cells. We used an optimiziation
strategy based on a genetic algorithm applied to some
physical parameters of the solar cell. In particular we
focused on optimizing the doping concentrations of
the bulk and of the emitter.

The Sentaurus device simulator was interfaced
with a genetic algorithm written in C, via a wrapper
capable of restarting Sentaurus with given physical
parameters.

Fig. 2. flow chart simulator device and genetic algorithm

The coupling between Sentuarus and the genetic
algorithm was controlled via an euristic algorithm, in
which the difference between the computed efficiency
in two consecutive steps was used to determine wether
the entire optimization process could be stopped.

A wrapper written in C supervises the communi-
cation between Sentaurs and the genetic algorithm.
The entire process was run under Linux, which pro-
vides an ideal platform for these kinds of algorithms.

References

1. M.A. Green, Solar cells: operating principles, technol-
ogy and system applications. 1986, Kensington: UNSW.

2. P. Wrfel, Physics of Solar Cells. 2005, Weinheim: Wiley.
3. A. Luque and S. Hegedus, Handbook of Photovoltaic

Science and Engineering. 2003, West Sussex: John Wi-
ley and Sons Ltd.

4. F. Granek, M. Hermle , C. Reichel, O. Schultz-W
ittmann, and S.W. Glunz, High- efficiency back-contact
back-junc tion silicon solar cell research at Fraun-
hofer ISE, in Proceedings of the 23rd European Photo-
voltaic Solar Energy Conference , Valencia, Spain, 991-
5 (2008).

5. P. A. Markowich, The Stationary Semiconductor Device
Equations (Springer, 1986).

118 SCEE2012

pfister
Rectangle
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Summary. In this paper a Swarm-Based algorithm 
approach for detecting an optimal geometrical and 
electrical connection of underground cables is 
presented, in order to minimize the magnetic field 
strength on the ground surface. Since the problem is a 
Mixed-Integer and Constraint Programming, a Discrete 
version of Flock-of-Starlings Optimization has been 
developed. A death penalty method has been used in 
the optimization process for evaluate the constraints. A 
comparative analysis is presented for different 
configurations, with the aim to evaluate the 
performance.  
 
1 Introduction 
 
In the last years the electric companies has 
revisited the design method of the underground 
power cables in order to address the problem of 
an optimal displacement of them. On the other 
hand, it is widely acknowledged that the current 
(50-60 Hz) of transmission and distribution lines, 
including electrical substations, generates 
magnetic fields that are the basis of 
electromagnetic pollution. Indeed the 
underground power lines were identified as major 
sources of magnetic fields, since they can 
produce a significant magnetic field on the 
ground surface, especially in cases where there 
are more than four three phase circuits. From an 
economic point of view, shielding the entire path 
of a transmission line is impractical. For these 
reason there needs of optimization techniques at 
design concerning both the geometrical and 
circuit assignation of each bundle [1, 2]. From the 
computational prospective this kind of problems 
belongs to the Mixed-Integer and Constraint 
Programming (MICP), in which discrete 
variables appear. The algorithms usually 
employed for these problems operate as a string 
generator, where the string is the individual, 
which codifies a possible solution.  Being the 
solution a string of numbers the first inconvenient 
is that some solutions are incompatible with the 
physical problem.  
In this paper a new kind of binary algorithm 
derived from the Flock of Starlings Optimization 
algorithm is presented and its performance over 
MICP problems are analyzed. In the work 

particular attention is given to the optimization of 
a system of power lines that generates the 
magnetic field of lower intensity without 
sacrificing efficacy, stability and availability of 
power systems. 
 
2 Discrete Flock-of-Starlings 
Optimization 
 
FSO is a bio-inspired algorithm, swarm-based, 
which has been employed successfully in several 
others electromagnetic optimization problems, 
thanks to its high capability of exploration and to 
escape from local minima [4]. As FSO can be 
considered an extension of PSO, so Discrete FSO 
(DFSO) is an extension of the Discrete Particle 
Swarm Optimization. In these model the 
trajectories of particles/birds have a probabilistic 
mean. In particular the velocity of a single 
particle must be interpreted as the probability that 
the current position may change from current 
state to another. Being the algorithm binary, also 
each coordinate of the position of k-th bird ( )kx t
can be 0 or 1. In addition the various component 
of the personal best and the global best are 
integer in {0,1}. The velocity of k-th bird ( )kv t is 
a probability and it must be constrained. A 
logistic transformation is introduced by using a 
sigmoid function in order to do this: 

( ) 1
( ) 1 kv

kS v e
−−= +      

The resulting change in the j-th component of 
position then is defined by the following rule: 

 ( ) ( )1 (0,1)

0

j
kj

k

if S v random
x t

otherwise

⎧ >⎪= ⎨
⎪⎩

 

Starting from these equations we can obtain the 
DFSO model. Indeed, in the FSO each individual 
chooses the direction in accord to the velocity of 
other members arbitrary chosen in the swarm. 
But now the velocity is the probability that an 
individual will change its status. Therefore, the 
choice of an individual is influenced from the 
mean probability of changing of the other 
member followed by it. The updating velocity 
equation for the DFSO becomes: 
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[ ( ) ( )]
k

j
k k k best k best kv M v p x g xω λ γ= ⋅ + − + −  

where kM is the average velocity among 
controlled birds,  expressing the probability of 
changing a digit from 0 to 1 of the members 
followed by the generic individuals in the swarm. 
The value of the kM  is constrained in [0.0, 1.0], 
in order to underestimate the influence of other 
members on the generic individual: this choice is 
extremely important since linking in a strong way 
the individuals can produce a stagnation and 
saturation in 1 or 0 direction. In figure 1 the 
pseudo code of DFSO is presented. 

 
Fig. 1. Pseudo code of DFSO 
 
3 Codification of the problem and 
results 
 
The simulation performed in this section takes as 
reference the analysis done in [1]. In [1] the 
design of cables displacement in a tunnel is 
trefoil configuration with the aim to minimize the 
effects of capacitive and inductive currents and 
support by racks. In the example hereafter 
presented, we use a simplified version of the 
circuit used in [1], by changing the number of 
circuits employed. The data are reported in Table 
1, whereas in the fig. 2 are depicted the 
displacement of cables in the rack with relative 
position of the bundles. The  combination of the 
cables are 6 and they can be explicitly expressed, 
123;132; 213; 231; 312; 321, for instance if there 
is a string such as 6345, it means that the first 
circuit is arranged as 321, second as 213 and etc. 
Set NC  as the number of circuit and with NB  the 
number of bundles, then any element is codified 
as an array of 0 and 1 of assigned length. 
We have implemented the algorithm in the  
MATLAB© environment and all the tests has 
been performed starting from a random 
initialization. In order to take into account the 
constraints we divided the array in 2 parts: the 
first part of the array represents an individual and 
must consist of integer value in the range 1-6; 

whilst the second portion of array represents the 
connections. Then we use a death penalty, which 
consists of assigning a huge value to the “bad” 
solution that doesn’t meet the constraints. The 
fitness function, that is the magnetic field 
intensity, is computed by using Biot-Savart 
formula and the result of a statistical analysis 
performed on 50 BFSO launches is reported in 
Table 2, showing the good performance reached. 
 
Table 1. Data of the power circuit employed in the test 
N.circuit P(Mw) Q(MVAr) Im (A) θ (deg) 

A 180 60 680 18 
B 155 43 577 16
C -100 -25 370 194 
D -125 -30 461 193 

 

 
Fig. 2. Displacement of bundles in the underground 
rack, all values is expressed in meter. 
 

Table 2. Results of BFSO 
Mean Variance Best 

Configuration 
Best Fitness 

Value 
6.4005e-007 3.262e-016 56533124 6.2566e-007 
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Summary: The paper approaches the topic of the 
numerical modelling of the electromagnetic 
disturbances that occurs on HV lines. Being broadband 
signals, an accurate evaluation of the disturbances 
propagation on HV lines requires that the transmission 
lines model to be taken into consideration. Therefore, 
in the first part of the paper the principles of modelling 
using non-uniform transmission lines are emphasized. 
Then the per-unit-length parameters computation is 
detailed, with the terms which take account of the 
influence of a lossy ground. In the second part of the 
paper the numerical computation algorithm 
implemented is presented. In the last part of the paper 
there are presented several examples using a concrete 
HV line to which several standard test signals have 
been applied. 
 
 
1 Introduction 
 
  The principle of modeling the non-uniform 
transmission lines is based on the idea of dividing 
the line into multiple pieces of uniform lines with 
the length very small in comparison with the 
wavelength.  

 
 
 
 
 
 
 
 

Fig. 1. Modelling using non-uniform transmission lines 
 

  The numerical modelling of the electromagnetic 
disturbances propagation on HV lines can be 
achieved using professional software packages 
designed for circuits’ numerical analysis. In this 
paper the PSPICE software that is included in the 
ORCAD 9.2 package was used. The general 
flowchart of the numerical algorithm 
implemented in accordance with the details 
outlined in the above paragraphs is presented in 
Fig. 2.  

 

 Implementation of the HV line 
geometrical proprieties and 

particularities 

Setting up of the equivalent  
ORCAD – PSPICE file 

(Delphi applicationTLM.exe) 

Numerical analysis using 
ORCAD – PSPICE 

Evaluation and interpretation of 
the numerical results obtained 

using ORCAD – PSPICE 
 

Fig. 2. General flowchart structure of the numerical 
analysis algorithm implemented 

 
2 The per-unit-length parameter 
  The HV line per-unit-length parameters are 
computed according to Carson’s theory and 
approximations for wave propagation above loss 
ground.  
Self impedance includes three components:  

 ii ii c gZ j L Z Zω= + +     (1) 
  The loop inductance is: 

 0
ii

i

2hL ln
2 r

iμ
π

=     (2) 

  The internal impedance: 

 0
c cc

1

I ( r )Z R jX
2 r I ( r )

γργ
π γ

= + =     (3) 

in which the material constants μ and σ 
respectively the propagation constant 

= jωμ( +j )γ σ ωε . 
The mutual impedance Zij of two conductors i 
and j, both parallel to the ground, with their 
respective heights above the ground being hi and 
hj have two components: 

 ij ij gmZ =j L Zω +    (4) 
  The mutual inductance Lij is: 

 ij0
ij

ij

D
L = ln

2 D
μ
π

′
   (5) 

  The impedance of the ground return path Zgm 
is: 
 gm gm gmZ =R jX+    (6) 
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  In the computation of the capacitance of 
transmission line accepts two factors: the length 
is larger then the dimensions of the circuits, the 
environment is uniform (air), the conductors have 
a cylindrical configuration.  
  The impedance of the earth return path is 
represented by Carson’s correction terms for the 
self and mutual impedances. 

 
3 Numeric simulation results 
  This paper presents several numerical 
applications of the developed algorithm. The 
examples focus on a 110 kV LEA. For the LEA 
parameters modeling, existing towers in the 
National Energetic System are used. Consider the 
case of an overhead power transmission line, at 
the left end one apply the lightning pulse voltage 
1.2/50 µs. The line parameters are computed at 
frequency 50Hz and the ground is characterized 
by ρ=100 Ωm. The response wave presented in 
Fig. 3 is the signal at the open load end of the 
high voltage line obtained with the proposed 
software module. 

           Time

0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms
V(1A1E1) V(1A3E100)

-2.0V

0V

2.0V

3.0V

 
Fig. 3. Lightning pulse voltage, signal on load– proposed 

software 
  To validate the results obtained with the modul 
software proposed, in Fig. 4 is presented the 
result obtained with ATP.  
  In case when the parameters are evaluation at 
500 KHz frequency, we can see the wave shape 
of signal in Fig.5 and when the ground is 
characterized by ρ=1000 Ωm the result is in 
Fig.6. 

 
Fig. 4. Lightning pulse voltage, signal on load-phase 1 with 

defect –ATP 
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Fig. 5. Lightning pulse voltage, signal on load – proposed 

software 
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Fig. 6. Lightning pulse voltage, signal on load – proposed 
software 

  The conclusion of analyses performed is that the 
appearance of a lightning pulse on one phase of 
the HV line conductors generates significant 
over-voltages and over-currents, while the waves 
shape is essentially influenced by the geometrical 
properties of the line. 
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Summary. Model order reduction (MOR) has been widely
used in the electric networks but little has been done to re-
duce higher index differential algebraic equations(DAEs).
Most methods first do an index reduction before reducing
a higher DAEs but this can lead to loss of system physical
properties. In this paper we present a new MOR method for
DAEs called the index-aware MOR (IMOR) which can re-
duce higher index-2 system while preserving the index of
the system.

1 Introduction

Consider a linear time invariant (LTI) DAE system:

Ex′(t) = Ax(t)+Bu, x(0) = x0, (1a)

y(t) =CTx(t), (1b)

where E,A∈Rn,n, B∈Rn,m,C ∈Rn,`,x(t)∈Rn is the
state vector, u(t) ∈ Rm is the input vector, y(t) ∈ R`

is the output vector and x0 ∈ Rn must be a consistent
initial value since E is singular. In many MOR meth-
ods [1] they always assume that x0 = 0 which lead
to a transfer function H(s) = CT (sE −A)−1B if and
only if matrix pencil sE−A is regular. Unfortunately
for the case of DAEs we cannot always have this free-
dom of choosing an arbitrary initial condition x0, in-
fact we cannot always obtain a transfer function espe-
cially for index greater than 1 as discussed in Sect. 2.
This motivated us to propose a new MOR technique
for DAEs called the IMOR method which takes care
of this limitation [2, 3]. In this technique before we
apply MOR we first decompose the DAE system into
differential and algebraic parts using matrix and pro-
jector chains introduced by März [4] in 1996. We then
use the existing MOR techniques such as the Krylov
based methods on the differential part and develop
new techniques for the algebraic part. This is done as
follows: Assume (1a) is of tractability index µ , then
it’s projector and matrix chains can be written as, set
E0 := E ,A0 := A, then E j+1 = E j−A jQ j, A j+1 :=
A jPj, j ≥ 0, where ImQ j = KerE j,Pj = In −Q j.
There exists µ such that Eµ is nonsingular while all E j
are singular for all 0≤ j < µ−1. Using these chains
we can rewrite Equation (1a) as projected system of
index-µ:

Pµ−1 · · ·P0x′+Q0x+ · · ·+Qµ−1x = E−1
µ

(
Aµ x+Bu

)
(2)

In order to decompose higher index systems (µ > 1),
März [4] suggested an additional constraint Q jQi =
0, j > i on the projector construction. If this constraint
holds then Equation (2) can be decomposed into dif-
ferential and algebraic parts. However, the März de-
composition leads to a decoupled system of dimen-
sion (µ + 1)n. It does not even preserve the stabil-
ity the DAE system. This motivated us to modify the
März decomposition using special basis vectors as
presented in papers [3] and [2] for the case of index-
1 and index-2 respectively. Our decomposition leads
to a decoupled system of the same dimension as that
of the DAE system. Then we apply Krylov methods
on the differential part and constructed subspaces to
reduce the algebraic parts. In Sect. 2 we briefly dis-
cuss the IMOR method for index-2 systems (IMOR-
2) more details can be found in [2].

2 Index-aware MOR for index-2 systems

Assume Equation (1a) is an index-2 system this im-
plies µ = 2. We observed that for higher index DAEs
there is a possibility of obtaining a purely algebraic
decoupled system depending on the nature of spec-
trum of the matrix pencil σ(E,A)=σ f (E,A)∪σ∞(E,A),
where σ f (E,A) and σ∞(E,A) is the set of the finite
and infinite eigenvalues respectively. This happens
when matrix spectrum has only infinite eigenvalues,
i.e.σ f (E,A) = /0. Thus higher index DAEs can be de-
composed into two ways. Due to space we are going
to only discuss the case when σ f (E,A) 6= /0 the other
case can be found in our paper [2]. We now assume
matrix pencil of Equation (1a) has atleast one finite
eigenvalue. We then construct basis vectors (p,q) in
Rn with their inversion (p∗,q∗)T for the projectors P0
and Q0 respectively where p ∈ Rn,n0 , q ∈ Rn,k0 . This
leads to a theorem below.

Theorem 1. Let P01 = pT
∗ P1 p, Q01 = pT

∗Q1 p, then
P01,Q01 ∈ Rn0,n0 are projectors in Rn0 provided the
constraint condition Q1Q0 = 0 holds.

Next, we construct another basis matrix (p01,q01) in
Rn0 made of n01 independent columns of projector
P01 and k1 independent columns of its complementary
projector Q01 such that n0 = n01 + k1 and it’s inverse
can be denoted by (p∗01,q

∗
01)

T . Then Equation (1) can
be decomposed as:
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2

ξ
′
p = Apξp +Bpu, (3a)

ξq,1 = Aq,1ξp +Bq,1u, (3b)

ξq,0 = Aq,0ξp +Bq,0u+Aq,01ξ
′
q,1, (3c)

y =CT
p ξp +CT

q,1ξq,1 +CT
q,0ξq,0, (3d)

where

Ap := p∗T01 p∗T0 E−1
2 A2 p0 p01, Bp := p∗T01 p∗T0 E−1

2 B,

Aq,1 := q∗T01 p∗T0 E−1
2 A2 p0 p01, Bq,1 := q∗T01 p∗T0 E−1

2 B,

Aq,0 := q∗T0 P1E−1
2 A2 p0 p01, Bq,0 := q∗T0 P1E−1

2 B,

Aq,01 := q∗T0 Q1 p0q01, Cp = pT
01 pT

0 C ∈ Rn01,`,

Cq,1 = qT
01 pT

0 C ∈ Rk1,`, Cq,0 = qT
0 C ∈ Rk0,`.

Equations (3a), (3b) and (3c) are of dimension n01,k1
and k0 respectively, where n = n01 + k1 + k0. System
(3) preserves stability of the DAE system (1) since it
can be proved that σ(Ap) = σ f (E,A). If we take the
Laplace transform of (3) and set ξp(0) = 0 then we
obtain

Y (s) =
[
Hp(s)+Hq,1(s)+Hq,0(s)

]
U(s)+Hq,0(0),

where Hp(s) =CT
p (sIn0 −Ap)

−1Bp,

Hq,1(s) =CT
q,1

[
Aq,1(sIn0 −Ap)

−1Bp +Bq,1
]
,

Hq,0(s) =CT
q,0

[
(Aq,0 + sAq,01Aq,1)(sIn0 −Ap)

−1Bp
]

+CT
q,0

[
Bq,0 + sAq,01Bq,1

]
, Hq,0(0)=−CT

q,0Aq,01Bq,1u(0).
Thus not always we can obtain the transfer function
of index 2 systems for arbitrary input vector u unless
Hq,0(0) = 0⇒ Y (s) = H(s)U(s). We can now apply
IMOR-2 method as follows: If we choose the expan-
sion point s0 ∈ C \ σ(Ap), we construct a Krylov-
subspace generated by Mp := −(s0In0 − Ap)

−1 and
Rp :=(s0In0−Ap)

−1Bp. Then, Vpr := orth(κr(Mp,Rp)),
r ≤ n01. We then use Vpr to construct the subspace
Vq,1 = span(Bq,1,Aq,1Vpr) and its orthonormal ma-
trix is denoted by Vqτ1 ,1

= orth(Vq,1),τ1 ≤ min((r +
1)m,dim(Vqτ1

)). We finally construct subspace
Vq,0 = Span{VQ1 ,VQ2 ,VQ3}, where
VQ1 = Aq,0Rp +Bq,0 + s0(Aq,01Aq,1Rp +Aq,01Bq,1),
VQ2 = Aq,01Bq,1,
VQ3 =

[
(Aq,0 + s0Aq,01Aq,1)Mp +Aq,01Aq,1

]
Vpr and it’s

orthonormal matrix is denoted by Vqτ0 ,0
= orth(Vq,0),

where τ0 ≤ min((r + 2)m,dim(Vq,0)). We can now
use the orthonormal matrices Vpr ,Vqτ1 ,1

and Vqτ0 ,0
to

reduce the dimension of the subsystems (3a), (3b) and
(3c) respectively as consequence the dimension of the
decoupled system (3) is also reduced. Hence, if we
substitute ξp =Vpr ξpr , ξq,1 =Vqτ1 ,1

ξqτ1 ,1
,

ξq,0 =Vqτ0 ,0
ξqτ0 ,0

, into system (3) and simplifying we
can obtain a reduced model of DAE system (1) which
will call the IMOR-2 model.

3 Numerical results

We used an index -2 test system called S8OPI in [5]
which is a large power system RLC model. It’s a

single-input single-output (SISO) system of dimen-
sion 4182. We applied the IMOR-2 method using
s0 = j103. We obtained a reduced model of total di-
mension 219 as shown in Table 1. We observed that
the magnitude of the transfer reduced model coincides
with that of the original model at low frequencies with
very small error as shown in Fig. 1. We have seen that

Table 1. Dimension of the Original and Reduced model

Models Dimension
n01 k1 k0

Original Model 4028 35 119
Reduced Model 170 1 48

the IMOR-2 method leads to good reduced model and
can be used on any index-2 system.

Fig. 1. Magnitude of the transfer functions
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Summary: A new concept of the coupling between 
pressure and thermal networks for thermal simulations 
of power devices is presented. The solution method 
and the convergence behaviour are discussed. 

1 Introduction 
The network approach is traditionally used for 
thermal simulations of electric power devices. In 
particular the coupling between thermal and 
pressure network seems to offer a good 
alternative to the mesh based methods like CFD 
thanks to an acceptable accuracy and a moderate 
computational effort. However, the first attempts 
to couple both network types have shown that the 
convergence behaviour is a limiting factor [1]. In 
this paper we present a new concept of the 
coupling between thermal and pressure networks 
as well as results of our investigations to mitigate 
the convergence problems.  

2 Network concept 
Let us consider a power transformer represented 
as a simple thermal model, Fig 1a. It consists of a 
coil submerged in a fluid as a heating device and 
a radiator as a cooling device dissipating heat to 
the ambient air. The circulation of the fluid 
through the coil and the radiator keeps the 
temperature of the coil within the required limit. 
The flow of the fluid determines the topology of 
the extended pressure network shown in Fig. 1b. 
Each  “fluid  flow”  branch  (red,  thick  line  in  the  
middle) is assisted by two “temperature” 
branches (thin, green lines) that enable 
propagation of the fluid temperature along the 
network according to the computed direction of 
the  flow.  The  mixing  of  the  fluid  at  different  
temperatures is performed by the “mixing nodes”. 
The coupling to the thermal network is realized 
by the “thermal junction” element. This element 
creates a temperature jump  in  the  
corresponding temperature branch, which is 
determined by the mass flow rate m  in this 
branch  and  the  power  P  flowing  from/to  the  
thermal network via the “fluid node”: 

pcmP                                   (1) 

where cp is  the  specific  heat  of  the  fluid.  The  
formula (1) is also used as a basic equation in 
implementation of the “mixing nodes”. 
The “fluid nodes” provide a galvanic connection 
to the thermal network, which is partially shown 
in Fig. 1c. The resistors used in the network 
schemes (Fig. 1bc) are formulated according to 
thermodynamic similarity theory [2] and will be 
explained in the extended version of this paper.  
 

 
 

 
 
 

Fig. 1 a) Transformer coil and radiator as a thermal 
model, b) the corresponding extended pressure 
network, c) part of the thermal network (for 2 inner LV 
solid segments of the coil and adjacent ducts) 
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Table 1  Analogy between quantities and units of 
electric, thermal and pressure networks. 

Electric 
network 

Thermal 
network 

Extended pressure network 

  Temperature 
branches 

Fluid flow 
branches 

Current    
[A] 

Power    
[W] 

- *) Mass flow 
rate [kg/s] 

Voltage U 
[V] 

Temperature 
[°C] 

Temperature 
[°C] 

Pressure 
[Pa] 

Electric 
resistance  

[Ohm] 

Thermal 
resistance  

[K/W] 

 
- *) 

Flow 
resistance 
[1/(m*s)] 

*) There is no “current” in the temperature branches of 
the pressure network. These branches transfer the 
“temperature signal” only. The direction of this 
transfer is the same as the direction of the fluid flow.  

3 Solution method 
In order to obtain a stable solution of the coupled   
networks we applied 3 following techniques: 

a) Separation of fluid flow branches from 
thermal/temperature branches 

b) Adaptive relaxation 
c) Control of the flow direction change 

Ad a): The coupled network problems are 
difficult to solve using the Newton-Raphson 
method implemented by Spice. Therefore, we 
have split the coupled network into 2 separate 
networks and solve them iteratively. The first 
network, pure pressure one, consists of the fluid 
flow branches including all flow resistances, 
buoyancy heads and pumps. The second one 
consists of the whole thermal network and the 
temperature branches of the extended pressure 
network. The “thermal junction” and the “mixing 
node” elements are the only network components 
that have a separate representation dedicated for 
each of the both networks. The separated 
networks can be solved using Spice by assuming 
boundary conditions in form of interface 
variables that are iteratively delivered by the 
solution of the other network. These interface 
variables include mass flow rates and velocities 
as a solution of the pure pressure network as well 
as temperatures as a solution of the 
thermal/temperature network.  
Ad b): A relaxation technique is needed to ensure 
the convergence. The actual values of the 
interface variables are modified in such a way 
that the difference between subsequent iterations 
is adaptively reduced from 80 % (for the first 
iteration) up to 1 % (for higher iteration counts).  

Ad c):  The  network  branches  with  a  small  mass  
flow  rate  show  a  tendency  to  change  the  flow  
direction during the iterative solution. Due to the 
significant temperature difference between the 
top and bottom fluid the direction changes may 
lead to non-convergence. For the vertical coil 
ducts this problem can be mitigated by disabling 
the flow from the top to the bottom by means of 
“blocking” resistors. In case of branches for 
which the flow can be bidirectional an enhanced 
relaxation technique has to be applied. 

4 Result 
An example of the convergence behaviour has 
been presented in Fig. 2. It  shows the mass flow 
rate within a coil duct of a liquid type power 
transformer. We selected a duct transporting a 
relatively small fraction of the total heat power 
(<0.5 %). Consequently we need 49 iterations to 
achieve the convergence criterion (<= 0.001 
relative change). Other load cases of the same 
transformer with larger or zero heat power 
transported through the same duct converge 
within 10-20 iterations. The typical solution time 
on a standard computer is in the range of 0.5 s.  
m

 
Iteration 

Fig. 2 Example of a convergence curve for mass 
flow rate in a transformer coil duct 

References 
[1] Gramsch C., Blaszczyk A., Löbl H., and  
Grossmann  S.,    Thermal Network Method in the 
Design of Power Equipment. Springer Verlag, 
Heidelberg, SCEE Conference Book 2007 (ISBN 978-
3-540-71979-3). 
[2]  Rohsenow  W.  M.,  Hartnett  J.  P.,  and  Cho,  Y.  I.  
(Eds.), 1998, Handbook of Heat Transfer, McGraw-
Hill, New York. 

 

kg/s 

126 SCEE2012



Thermal Design of VSD Dry-Type Transformer  
Marcos Bockholt1, Wolfgang Mönig1, Benjamin Weber1 

Bhavesh Patel1
, B. Cranganu-Cretu ² 

 
1 ABB AG, DEDC / CoE Dry Type Converter Transformers, Keffelkerstr. 66, 59929, Brilon, Germany.  
Contact:  marcos.bockholt@de.abb.com wolfgang.moenig@de.abb.com, benjamin.weber@de.abb.com, 
bhavesh.k1.patel@de.abb.com,  
 
2 ABB Schweiz AG, Corporate Research, Segelhofstrasse 1K ,  5405, Baden-Dättwil, Switzerland.  
Contact: bogdan.cranganu-cretu@ch.abb.com 
 
Summary Design of variable speed drive (VSD) dry-
type transformers requires accurate electromagnetic 
and thermal modelling of the transformer. The models 
should be able to explain the behaviour of the 
transformer under normal and short circuit conditions. 
If not appropriately taken into consideration, load 
losses can generate local overheating in the transformer 
and hence cause the transformer failure due to 
increased winding temperature. A thermal network 
model to be used with a finite element model of the 
unit is described. This method is shown to deliver a 
good compromise between time-consuming 
simulations and a semi-empirical thermal model for 
reliable designs of complex dry-type VSD 
transformers.   
 
1 Introduction 
 
Variable speed drives are used to control the speed of 
rotation of electronic motors in many industrial 
applications. These are pumps, ventilators, 
compressors, belt conveyors, rolling mills, paper 
machines and an innumerable amount of different 
machines used in manufacturing and other industries. 
ABB Dry Type Converter Transformers have an 
extensive experience with VSD transformers since 
more than 20 years. Especially the harmonic 
frequencies content in the transformer current increases 
the mechanical, dielectrical and thermal stresses. 
Therefore the transformers must be specially designed 
for this duty, fulfilling the IEC [3] requirements and 
beyond. 
 
2 Electromagnetic Simulation of VSD-
Transformers 
 
Analytic formulations for the losses in the windings 
which are governed by skin and proximity effects are 
limited because of the complex arrangement of the 
windings in typical VSD transformers. As a result, the 
use of computational electromagnetic is vital in order 
to predict these losses at the normal operating 
conditions. In this paper, we consider the case of a 12-
pulse transformer consisting of the two secondary low 
voltage (LV) windings.  
 
3 Thermal Network Model 
 
The main focus of this work relies on the thermal 

model to be used with the losses computed by the 
electromagnetic simulations [4] and predict local 
overheating of the windings. The model proposed uses 
physics-based formulation of mass, energy and 
momentum balance equations which enables a large 
validity range of the method in opposite to purely 
empirical models.   
 
3.1 Physics-based Thermal Model 
 
The physics of the thermal model is described in three 
basic structures. The simplified generic structures show 
to be very efficient for modelling and simulating 
advanced thermal systems [1,2,5]. 
 
3.1.1. Solid Structure 
 
The winding losses from the electromagnetic 
simulation (ohmic and eddy-current) are applied in the 
solid structure. In this structure, the conductors and 
insulation material are described. The energy balance 
is stated as follows 
 

 ,0 condk QP �
−=                 (1) 

 

where kP
 are the transformer losses and condQ�

 is the 
(axial and radial) heat diffusion inside the windings.  
 
3.1.2. Surface Structure 
 
The surface structure is used to map the interface 
between a solid potential and a fluid potential. The 
energy balance equation is stated as follows: 
 

,0 radconvcond QQQ ���
−−=     (2) 

 

where radconv QQ �� ,
are convective and radiation heat 

transfer, respectively.  
 
3.1.3. Fluid Structure 
 
The fluid structure is used to map the cooling duct 
between winding blocks.  

���
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where inm� , outm� are the inlet and mass flow rate of 

the cooling medium inside the transformer cooling 

duct, respectively. inh  and  outh  are the inlet and 

outlet enthalpy of the cooling medium, respectively. 

inv  and outv  are the inlet and outlet velocity of the 

cooling medium, respectively.  
 
The non-linear algebraic system of equations described 
in the structures is represented in Eq.  4 and is solved 
by a standard algebraic equations solver. 
 

,0)( =xF      (4) 
 
where x  is the vector of temperatures of all structures  
of the transformer model.  
Figure 1 shows an overview of the thermal model. The 
solid structures are connected with each other via heat 
conduction axially. The solid and surface structures are 
connected radially via conduction. The surface 
structures are connected to each other via radiation 
resistance. The connection between a surface and a 
fluid is done by convective resistance. Both the 
convective and the radiation resistance are non-linear, 
temperature dependent resistances.    

 
Fig. 1: Network representation of the thermal 
model with a vertical discretization of 3 
structures (In this example: 1 low voltage and 
1 high voltage winding package) 
 
3.2 Object-Oriented Structure 
 
Figure 2 shows the object oriented structure of the 
transformer. The structure of the model is fixed, i.e. 
one coil, one core and an open number of low voltage 
(NLV) and high voltage (NHV) winding packages. The 
geometry is fully parametrized which allows high 
freedom during design process.  

 
Fig. 2: Object-oriented structure of the sub-
models of the transformer thermal model 
 
 
3.3. Thermal Management of Windings 
 
As part of the design optimization, it is possible to 
visualize the thermal management of each winding 
block. The thermal management gives information 
about the heat transfer by convection at the winding 
surroundings. The designers are able to choose more 
effective cooling ducts by comparing thermal 
characteristic number as the Rayleigh number. 
 
4 Weak Coupling of Electromagnetic 
Simulation with Thermal Network 
Model 
 
A weak coupling of the thermal network model is 
conducted by using the same axial discretization 
(number of structures in axial direction) of the thermal 
model and the post-processed losses of the 
electromagnetic simulation [4]. The losses computed 
during the electromagnetic simulations are used as 
input for the thermal model. 
 
5 Conclusion 
 
The method shown in the present work speeds up the 
design process of complex VSD-transformers. 
Overheated areas are localized before production of the 
unit. This method has been proven to be a good 
compromise between time-consuming simulation and a 
semi-empirical thermal model for production of 
complex dry-type transformer designs.   
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Summary. In this contribution we investigate the perfor-
mance of a parallel ILU preconditioner for the iterative so-
lution of a magnetostatic model problem. Using the mag-
netic vector potential A and conformal FEM-discretization
results in a singular system matrix. We construct the pre-
conditioner for the CG-solver by applying a shift for regu-
larization, see [2, 3, 6]. The resulting regular matrix is then
decomposed by the ILUPACK1 library and is used for pre-
conditioning. ILUPACK is a MPI-parallelized implementa-
tion of the inverse-based multilevel block ILU, see [4].

1 Introduction

The magnetostatic problem under consideration writes

curl
1
µ

curlA = j . (1)

Herein A is the magnetic vector potential, j is a pre-
scribed divergence free current density, and µ is the
possibly nonlinear magnetic permeability. Using con-
formal finite elements for the discretization leads to
the following problem that is to be solved in weak
formulation

(
1
µ

curlA,curlA′) = (j,A′) . (2)

The solution of magnetostatic problems in presence
of nonlinear magnetic material can be time consum-
ing. The change in the material parameters during the
nonlinear iteration results in a change in the system
matrix M := ( 1

µ
curlA,curlA′). Magnetostatic prob-

lems are typically solved by preconditioned iterative
solvers [2, 5, 7]. Jumps in the magnetic permeability
deteriorate the condition of the problem, and precon-
ditioning is mandatory. The preconditioner P−1 has to
be updated many times if M changes too much during
the outer nonlinear iteration, see Fig. 1. Therefore it
is essential to provide a fast way of updating the pre-
conditioner.

The system matrix M is singular. In this paper we
regularize M by using a small shift β ∈R. This yields
the preconditioner

P := (
1
µ

curlA,curlA′)+(
β

µ
A,A′) . (3)

1 http://ilupack.tu-bs.de

Fig. 1. Algorithm to solve a nonlinear magnetostatic prob-
lem.

The decomposition of P is then accomplished by us-
ing the mentioned MPI-parallelized ILUPACK library.
In the next Section 2 we introduce the theoretical
background of ILUPACK. In the numerical experi-
ments of the final Section 3 we show the parallel scal-
ing performance of the ILU-preconditioner as well as
the preconditioning behavior itself.

2 Inverse-Based Multilevel Block ILU

For preconditioning the conjugate gradient method,
ILUPACK computes an incomplete Cholesky-like fac-
torization P ≈ LDLT , where L is unit lower triangu-
lar and entries of small modulus are dropped. ILU-
PACK’s hallmark is to keep ‖L−1‖ below a given
bound κ during the factorization [4]. To do so, at
each step l of the decomposition we either pursue the
factorization whenever ‖L−1‖ 6 κ , or we postpone
a step, otherwise (cf. Figure 2). The block of post-
poned updates SC (known as Schur complement) be-
comes the starting matrix of the next level. Using this
inverse-based strategy and a moderate value of κ (e.g.
κ = 5) it can be shown that small eigenvalues of P are
revealed by SC. Thus SC serves as some kind of coarse
grid system.

The parallelization of ILUPACK mainly consists
of a nested dissection partitioning of the graph of P.
This yields a hierarchy of subsystems which can be
represented by an incomplete binary task tree. Start-
ing with the leaves, the multilevel ILU is applied to
all subsystems concurrently until these join the same
parent task. Separators are factorized at last [1].
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Fig. 2. ILUPACK pivoting strategy.

3 Numerical Experiments

Numerical experiments were made on the model prob-
lem of Fig. 3. It consists of a copper coil, and a
non-conductive high permeable core. The tests were

Fig. 3. Results of the magnetostatic field computations. The
left picture shows the setting and the relative magnetic per-
meability, the central picture shows the exciting current den-
sity (1kA total current), and the right picture shows the re-
sulting magnetic field H = 1

µr ·µ0
· curlA.

carried out on a 12-core INTEL-Westmere worksta-
tion with 3.06GHz and activated hyper-threading. We
chose β = 0.01 for the regularization parameter in (3).
In our experiments we are testing the parallel perfor-
mance up to 8 cores. The results of the CPU times of
the solver are shown in Fig. 4. Therein, the key val-
ues of two different meshes for 1.2E+6 unknowns and
for 1.02E+7 unknowns are drawn. One can observe a
perfectly parallel scaling for the pure ILU factoriza-
tion part. A slightly worse behavior can be seen for
the preconditioned conjugate gradient (PCG) solver.
Moreover, the PCG needs more time than the factor-
ization for greater problem dimensions. This is due to
the fact, that the number of iterations is also increas-
ing with the number of unknowns, see Fig. 5.

Finally, it can be concluded that ILUPACK seems
to be a very promising library for the fast parallel so-
lution of magnetostatic problems. This needs to be
confirmed for more complex geometries.
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Efficient Shooting Method Based on Leading Dynamics Determination
by QR Decomposition

Federico Bizzarri1, Angelo Brambilla1, Giambattista Gruosso1, and Giancarlo Storti Gajani1

Politecnico di Milano, DEI, p.za Leonardo da Vinci, 32, 26013 Milano, Italy
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Abstract In this paper an improved version of the conven-
tional shooting method based on the Newton iterative algo-
rithm is presented. One of the main drawbacks of the shoot-
ing method is due to the determination of the fundamental
matrix by means of a product of partial matrices that limits
its application to medium size circuits. Fundamental ma-
trix free approaches have been presented in literature, they
are based on the use of theGMRESmethod that lowers the
computational effort from that of matrix by matrix product
to that of matrix by vector product. In this paper a different
approach is presented that exploits the properties of theQR

decomposition to determine the leading dynamics of the cir-
cuit, i.e. the working modes represented by the eigenvectors
of the circuit fundamental matrix associated to the Floquet
exponents with the smaller negative real part. This can dras-
tically reduce the number of matrix by vector products as in
the GMRES method, but still makes available the main and
most useful portion of the fundamental matrix, which is a
key element, for example, in the determination of the stabil-
ity of circuits working in a steady state condition.

1 Introduction

The shooting method, in contrast to harmonic bal-
ance, is well suited to compute the steady state be-
haviour of strong non-linear circuits and its impor-
tance has been recently strengthened to the reliable
extension of this approach to mixed-signal problems
[2]. Its “engine” is based on a time domain anal-
ysis that solves the DAE modeling the circuit with
a variable time step integration method [1, 5]. Time
domain analyses computes the residue, i.e. the dif-
ference among state variable values at the beginning
and at the end of the integration time interval, and
the sensitivity matrix, also known as the fundamen-
tal matrixM , that relates variations of state variables
at the end of the integration period to those at the be-
ginning. One of the main drawbacks of the shooting
method is that its application is limited to medium
size circuits. This is due to the fact thatM is de-
rived as a product of partial matrices each computed
at each integration time step of the time domain anal-
ysis. If we assume that the circuit is characterised by
N state variables and that the integration is performed
on S time points, the effort to computeM , which
in general is full, is proportional to S×N3 [7]. The
introduction of the “matrix free” shooting methods

based onGMRES sensibly reduces the computational
effort [6]. TheGMRESmethod builds the Krylov base
B =

[

Mp ,M2p, . . . ,Mnp
]

whereM ∈R
N×N andp ∈

R
N is a “tentative” vector. IfB spans the solution of

the steady state problem with respect to a given error
threshold, the solution is found inn matrix by vector
products with a total cost S×n×N2. The gain is thus
proportional to a factor(N−n). Consider now







dx
dt

+G(x, t) = 0

x(t +T)− x(t) = 0
(1)

whereG(x, t) : RN+1
→ R

N, models the vector field,
x∈RN is the solution,t ∈R+ represents time andT ∈

R
+ is the working period. Assume to solve Eq. (1) in

the time domain with the simple Implicit Euler inte-
gration method and consider one integration time step
of lengthh∈R

+, from tn to tn+1 = tn+h, we have

x(tn+1)− x(tn)+hG(x(tn+1), tn+1) = 0.

By deriving this equation with respect to thex(t0) ini-
tial condition we obtain

dx(tn+1)

dx(t0)
−

dx(tn)
dx(t0)

+h
G(x(tn+1), tn+1)

dx(tn+1)

dx(tn+1)

dx(t0)
= 0

from which the sensitivity ofx(tn+1) with respect to
x(t0) can be immediately computed as

dxn+1

dx0
=

Mn+1
︷ ︸︸ ︷

(1N +h
dG(xn+1, tn+1)

dxn+1

)

−1 dxn

dx0
(2)

where1N is the order N identity matrix and subscript
n refers to time instanttn. To compute productMp ,
either theMn matrices withn = [1, . . . ,S] in Eq. (2)
or thexn solution vectors must be stored and this can
be problematic when dealing with large circuits. The
implementation chosen in our simulatorPAN 2 fol-
lows the second solution to minimise memory usage.
Therefore, to computeMp , G(xn+1, tn+1) is reevalu-
ated at each time point, theMn+1 matrix is recom-
puted (at the cost of one LU factorisation) and the

2 Our simulatorPAN is available at the URL:http://
brambilla.ws.dei.polimi.it.
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Mn+1

n

∏
k=1

Mkp (3)

left matrix by vector product is performed.

2 The proposed approach

According to Floquet theory, matrixM can be decom-
posed as

M =
N

∑
k=1

eλkTvku
T
k (4)

whereλk are the Floquet exponents ofM anduk, vk

are the corresponding right and left eigenvectors [3].
The boundary value problem defined in Eq. (1) can be
solved with the Newton iterative method

xp+1
0 = xp

0 −

(

N

∑
k=1

eλkTvku
T
k −1N

)

−1
(

xp
S− xp

0

)

wherep is the iteration index andxp
0 is an approxima-

tion of the initial condition. If we sort in decreasing
order the Floquet exponents and set to 0 those having
a real part considerably less thanℜ(λ1) we have

x̃0
p+1 = xp

0 −

(

˜M −1N

)

−1
(

xp
S− xp

0

)

where ˜M = ∑N−L
k=1 eλkTvkuT

k ∈R
N×N is a rank L ma-

trix that represents theleading dynamicsof the system
modeled by Eq. (1) and̃xp+1

0 is the approximated new
tentative solution computed by the Newton method.

Apparently, the “truncated” matrix˜M can be de-
rived only after having performed the complete ma-
trix product (3). On the other hand the leading dy-
namics of the circuit can be computed by exploiting
properties of the QR decomposition as shown in the
sequel. Consider the product shown in Eq. (3) per-
formed using only the first S1 < S time samples. Con-
sider theQ1,S1R1,S1 = M1,S1P1.S1 QR decomposition
whereR1,S1 ∈ R

N×N is upper triangular andP1,S1 is
a permutation matrix sorting the diagonal ofR1,S1 in
decreasing order. We set to 0 ther i, j entries ofR such
that r i,i < α |r1,1|. It can be shown that|r i,i | >

∣

∣r i, j
∣

∣

with j > i so that N− L last columns ofQ1,S1 can
bedroppedin the subsequent left matrix product per-
formed to compute the fundamental matrix. A QR
decomposition can be performed after a predefined
number of integration time steps. The structure ofR
can be thus checked to see if other columns of the re-
latedQ matrix can be dropped. At the end of this pro-
cess, i.e. at the end of the integration process along
the T working period, we have performed no more
than S× (N−M)×N2 matrix by vector products (as
with GMRES), with the advantage of having computed
a version of˜M representing the leading dynamics of
the system, i.e. that has the same(N−L) eigenvalues
and eigenvectors of theM fundamental matrix and,
finally, with the advantage of avoiding the storage of
partial matrices or solutions.

+
−

D1 D2 D3 D4

R1 R2 R3 R4

Ro
C1 C2 C3 C4e(t)

Figure 1.The schematic of the fourth order nonlinear ladder
circuit. Cx = 1µF, Rx = 1kΩ, e(t) = 10sin(200πt).

3 Simple simulation example

The schematic of a simple example circuit is shown
in Fig. 1. It is a nonlinear ladder circuit with 4 state
variables. The working period of the circuit isT =
10ms. AfterT/4, a QR decomposition ofM1,S1 gives

R1,S1=









−0.1 0 −0.1 −0.1
0 9.7×10−4

−7.0×10−4 9.2×10−4

0 0 −2.0×10−6 8.6×10−7

0 0 0 1.8×10−9









Settingα = 10−3, the last two rows ofR1,S1 can be set
to 0, i.e. the leading dynamics is adequately spanned
by the first two columns ofQ1,S1. The maximum rel-
ative error in computing the Floquet multipliers of
M is less than 6×10−4 showing the effectiveness of
the proposed method. This approach has been applied
also to the oscillator described in [4] characterized
by about 500 state variables. With the proposed ap-
proach, choosingα = 10−7, the leading dynamics is
spanned by only 41 columns ofQ just afterT/10.
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On an integral equation method for the electromagnetic scattering of
biperiodic structures
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Summary. In this note we study an integral formulation for
electromagnetic scattering by a biperiodic structure. It is de-
rived from the time-harmonic Maxwell equations via poten-
tial methods by the combined use of a Stratton-Chu integral
representation and an electric potential ansatz. We obtain
results on existence and uniqueness for the solutions of this
singular integral equation and give an outlook on the equa-
tion’s numerical treatment via the fast multipole Boundary
Element Method.

1 Introduction

Studying an integral formulation for electromagnetic
scattering by a biperiodic structure generalizes the re-
sults from [5] where the equivalent problem for one-
periodic structures was treated. Up to now, both in
the one- and the biperiodic case several integral for-
mulations have been proposed and implemented (e.g.
[4]). We derive a new formulation by adapting the ap-
proach of [2], in which instead of a periodic structure
a bounded obstacle was focussed on.

2 The electromagnetic scattering
problem

Let Σ be a smooth non-selfintersecting surface which
is 2π-periodic in both x1- and in x2-direction and sep-
arates two regions G± ⊂ R3 filled with materials of
constant electric permittivity ε± and magnetic perme-
ability µ±. The surface is illuminated from G+ by an
electromagnetic plane wave at oblique incidence

(Ei,Hi) = (p,s)ei(α1x1+α2x2−α3x3)e−iωt , (1)

which is α̃-quasiperiodic1 in x1 and in x2 of period
2π , i.e. satisfies the relation

u(x̃+2π,x3) = ei2π(α1+α2)u(x). (2)

The total fields are given by

E+ = Ei +Erefl, H+ = Hi +Hrefl, (3)

E− = Etran, H− = Htran (4)

1 In the following the tilde indicates the orthogonal projec-
tion of a three-dimensional vector on the (x1,x2)-plane.

and - after dropping the factor e−iωt - satisfy the time-
harmonic Maxwell equations

curlE = iωµH and curlH =−iωεE, (5)

just like the incident and the scattered fields. When
crossing the surface the tangential components of the
total fields are continuous

n× (E+−E−) = 0, on Σ , (6)
n× (H+−H−) = 0, on Σ , (7)

where n is the unit normal to the interface Σ . As the
domain is unbounded, we must additionally impose
the so called outgoing wave condition at infinity

(Erefl,Hrefl) = ∑
n∈Z2

(E+
n ,H+

n )ei(αn·x̃+β+
n x3), (8)

(Etran,Htran) = ∑
n∈Z2

(E−n ,H−n )ei(αn·x̃−β−n x3), (9)

where n =(n1,n2)T, x̃ =(x1,x2)T, αn =(α1 +n1,α2 +

n2) and β±n =
√

κ2
±−|αn|2 with κ2

± = ω2ε±µ±. We
shall assume κ+ > 0, Reκ− > 0, Imκ− ≥ 0. As we
can easily derive the magnetic field in dependence of
the electric field E as H = − i

ωµ
curlE, we are now

interested in finding vector fields E satisfying (5)-(8)
such that

E, curlE ∈ (L2
loc(R3)3. (10)

The α̃-quasiperiodicity of the incident waves moti-
vates these two fields to be α̃-quasiperiodic them-
selves.

3 Boundary integral formulation

In order to solve the electromagnetic scattering prob-
lem introduced in section 2, we derive an equivalent
integral equation via potential methods. For this, we
combine a direct with an indirect method: in the do-
main G+ above the grating surface Σ , we work with
the quasiperiodic version of the Stratton-Chu inte-
gral representation and in the domain G− below the
grating surface, we make use of an electric potential
ansatz. As it is common when working with periodic
structures, we restrict our calculations to one period
Γ = {x̃ | 0 < x1,x2 < 2π} of the surface. Its one-sided
limit from G± will be denoted by Γ±.
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3.1 Derivation of the boundary integral equation

The potentials which provide α̃-quasiperiodic solu-
tions of the time-harmonic Maxwell equations are
based on the α̃-quasiperiodic fundamental solution

Gκ,α̃(x) =
i

8π2 ∑
n∈Z2

eiαn·x̃+iβn|x|

βn
. (11)

The single layer potential Sκ,α̃ is then given by

(Sκ,α̃ u)(x) =
∫

Γ

Gκ,α̃(x− y)u(y) dσ(y), (12)

for x ∈ R3 \Γ . We define the electric potential Ψ α̃
Eκ

generated by j ∈H−
1
2
×,α̃(divΓ ,Γ ) as

Ψ
α̃

Eκ
j = κ

−1 curlcurlSκ,α̃ j (13)

and the magnetic potential Ψ α̃
Mκ

generated by m ∈

H−
1
2
×,α̃(divΓ ,Γ ) as

Ψ
α̃

Mκ
m = curlSκ,α̃ m. (14)

Defining the Dirichlet traces γD and the Neumann
traces γNκ

γ
±
D u = (n×u) |Γ± ,γ±Nκ

u = κ
−1 (n× curlu) |Γ± (15)

as well as

[γD] = γ
−
D − γ

+
D ,{γD}=−1

2
(
γ
−
D + γ

+
D
)
, (16)

[γNκ
] = γ

−
Nκ
− γ

+
Nκ

,{γNκ
}=−1

2
(
γ
−
Nκ

+ γ
+
Nκ

)
, (17)

we have the following jump relations for the electric
and magnetic potential:

[γD]Ψ α̃
Eκ

= 0, [γNκ
]Ψ α̃

Eκ
=−I, (18)

[γNκ
]Ψ α̃

Mκ
= 0, [γD]Ψ α̃

Mκ
=−I. (19)

With the Stratton-Chu ansatz

Erefl = Ψ
α̃

Eκ+
γ

α̃
Nκ+

Erefl +Ψ
α̃

Mκ+
γ

+
D Erefl (20)

in G+ and the ansatz

Etran = Ψ
α̃

Eκ+
j (21)

in G−, the use of the transmission conditions (6),(7)
as well as the use of the jump relations (18),(19) for
the electric and magnetic potential lead to the singular
integral equation

Aα̃ j =
[

ρ1C+
α̃

(
M−

α̃
+

1
2

I
)

+
(

M+
α̃

+
1
2

I
)

C−
α̃

]
j

=−γ
−
D Ei,

(22)

where ρ1 = µ+κ−
µ−κ+

and

C±
α̃

= {γD}Ψ α̃
Eκ±

= {γNκ±}Ψ
α̃

Mκ±
, (23)

M±
α̃

= {γD}Ψ α̃
Mκ±

= {γNκ±}Ψ
α̃

Eκ±
. (24)

3.2 Properties of the boundary integral equation

We can show that the singular integral operator Aα̃

is Fredholm with index 0 and that under certain con-
ditions there exists a unique solution of the integral
equation (22). The proofs are based on techniques
used in [3], [2] and [5].

Theorem 1 (Fredholmness). Assume that the elec-
tric permittivity ε± and the magnetic permeability µ±

satisfy
(

1+ µ−
µ+

)
6= 0 and

(
1+ ε+

ε−

)
6= 0. Then Aα̃ is

a Fredholm operator of index zero on H−
1
2
×,α̃(divΓ ,Γ ).

Theorem 2 (uniqueness). Assume Imε−, Im µ− ≥ 0
with Im(ε+ + µ+)≥ 0. Then (22) has at most one so-
lution if ker{Ψ α̃

Eκ+
}= {0}.

Theorem 3 (existence). Let ε−,µ− ∈ R+ and sup-
pose the conditions of Theorem 1 are satisfied. If the
electric potential Ψ α̃

Eκ−
is invertible, then there exists

a solution j ∈H−
1
2
×,α̃(divΓ ,Γ ) of (22).

4 Numerical treatment and prospects

Considering the future implementation of the inte-
gral equation (22) we will use the Boundary Element
Method which reduces the spatial dimensionality by
one compared to the Finite Element Method. Further-
more, we want to accelerate occurring multiplications
via a fast multipole method. A crucial issue is the
evaluation of the α̃-quasiperiodic Green’s function
(11). The use of Ewald’s method seems to be promis-
ing in this context (cp. [1]).

So far we have only studied the electromagnetic
scattering problem for smooth surfaces Σ , but want
to extend our results to Lipschitz surfaces with edges
and corners.
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Electro-hydrodynamic numerical modelling of corona discharge
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Summary. Prediction of cooling by forced convection due
to corona-induced ion flow in an electro-hydrodynamic (or
EHD) simulation requires a reliable corona electrode model,
which has to be formulated as a boundary condition (BC)
to the EHD partial differential equations. We discuss and
compare four different BCs in the context of finite-volume
methods (FVM). It turns out that the optimum choice de-
pends on the given physical information.

1 EHD differential and numerical model

Corona discharge refers to field induced gas ioniza-
tion near an electrode, e.g., a thin wire (emitter), in
series with the dark discharge associated with the ion
drift towards counter electrodes (collector). The ion
motion induces a drag of the neutral gas, and can be
used to convection cool a heat source, which may be
the collector at the same time. The associated equa-
tions consist of the Poisson equation for the electric
potential φ , and the balance equations for the densi-
ties for ion number Np, mass ρ , momentum ρv, and
energy (written in terms of the temperature T ). In the
Boussinesq approximation, they read

−∇ · (ε∇φ) = qNp (1)

∂Np

∂ t
=−∇ ·

(
j
q

)
=−∇ ·

(
(bE+v)Np +a∇Np

)
(2)

∇ ·v = 0 (3)

Dv
Dt

= ν∆v−∇

(
p
ρ
−g ·x

)
+ fB + fEHD (4)

ρCV
DT
Dt

= k∆T + j ·E− fEHD ·v (5)

where ε is the electric permittivity, q the ion charge,
E = −∇φ the electric field, b the ion mobility, a
the diffusion constant, D•

Dt = ∂•
∂ t + v ·∇• the mate-

rial derivative for the velocity field v, ν the viscosity,
p the pressure, g the gravitational acceleration, fB =
β (Tref−T ) the buoyancy force, and fEHD = qNpE the
Coulomb force, assumed to be distributed over all gas
particles via scattering. The electric current density j
consists of drift, convection, and diffusion currents.

The system of coupled, nonlinear PDEs has to be
solved for given initial and boundary conditions. Prior
to discussing the latter, we summarize the global solu-
tion procedure. First, in a Gauss-Seidel-like approach,
the solution is determined progressively for the block

φ −Np, then for the block p− v and finally for T .
Because of the weak influence of each block to the
preceding ones, only one iteration per time step is
performed. Electrostatics equations are solved with
nonlinear formulation to reach convergence (for de-
tails, see [2]) while Navier-Stokes block is solved via
a SIMPLE-like projection method (λ (v) being a coef-
ficient depending on both the estimated velocity and
the grid). Here we sketch how this iteration is built:

n until
∫

Ω
(N(k−1)

p eφ (k,0)−φ (k,n) −N(k)
p )< tol.

l until ‖φ (k,n−1)−φ (k,n)‖∞ < tol.

s solve −∇ ·(ε∇φ (k,n))= qN(k−1)
p eφ (k,0)−φ (k,n)

,

linearized around φ (k,n−1)

l solve q ∂N(k)
p

∂ t =−∇ ·
(

j(φ (k,n),N(k)
p )
)

n solve momentum equation (4) for v(0)
n until

∫
Ω

∇ ·v( j) < tol.
l solve −∇ · (λ (v( j−1))∇p( j)) = ∇ ·v( j−1)

l correct v( j) = v( j−1)−λ (v( j−1))∇p( j)

n solve temperature equation (5)

2 Corona discharge boundary conditions

We restrict our discussion to the BC for Np at the
corona electrode, comparing four different BC types.
For the rest of the boundaries, instantaneous recom-
bination BC (n ·∇Np = 0) is applied at counter elec-
trodes, while in all other cases well-known standard
BCs can be used.

The first approach we present is the natural condi-
tion, namely imposing the normal flux jn associated to
(2) to be uniform; this approach is very accurate when
geometry is symmetric and one knows the actual cur-
rent from measurments, but has the drawback of be-
ing totally unpredictive. Nonetheless, this approach is
sometimes used with arbitrary geometries, defining an
active surface that emits the necessary current density.
The generally accepted Kaptsov’s hypothesis (see [5])
states that En := E ·n = Eon, namely the field remains
constant at the (virtual) electrode once the corona dis-
charge is triggered. A value for Eon can be computed
from Peek’s law (see e.g. [6], ch. 4) and allows to
define the active region as the part of the boundary
where En > Eon holds.

For having a predictive condition, instead, one
needs to somehow enforce a constitutive law linking
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Fig. 1. Gometries from [4] (left) and from [3] (right).

jn or Np with En. We choose to adopt the second, sim-
pler formulation, namely to impose Fi(En,Np) = 0 to
be satisfied on the boundary. Our first approach, given
in [1], is based on a simplified physical model of the
virtual contact which takes into account charge carri-
ers injected solely from the active surface (with a sat-
uration current density jsatH(En−Eon), where H(•)
is the Heaviside step function), and backscattered car-
riers (with current density given by−qNpw at the con-
tact, where w is a characteristic velocity). Neglecting
diffusion current at the electrode, this approach can be
interpreted as imposing the relation

F1(En,Np) = qNp(bEn−w)− jsatH(En−Eon) = 0 (6)

Choice for the parameters jsat and w needs to guaran-
tee that the injected charge can naturally force En =
Eon, otherwise current density saturates to jn = jsat
and space charge controlled current (SCCC) regime
is not reached anymore.

Our second approach is to model the boundary as
an ideal rectifying diode, in which no ion density is
flowing under the Eon treshold, while every Np value
is possible when En = Eon. Explicitly, this approach
is equivalent to enforce the following:

F2(En,Np) = Np

(
1− ( En

Eons
)β

)
= 0 (7)

β ∈ [0,1] being a smoothing factor. This relation
strongly enforces both Np to vanish in the other non
active portion of the electrode, and En to match Eon in
the active portion.

Our last approach assumes a constitutive relation
which is a more regular version for the former one:

F3(En,Np) = Np−Nref

(
exp
(

En
Eref

)
+1
)
= 0 (8)

where Nref and Eref are a device-off ion density and a
reference electric field. The choice of these two values
can thus be made independently from the particular
case (using e.g. air conductivity for Nref).

3 Results and conclusions

As examples, a wire-to-grid geometry [4] and a wire-
to-plate geometry [3] have been investigated (Fig. 1).

The former consists of a duct with a grounded
grid in the middle (both collectors), and an emitter
placed upstream. The Eon value is determined from
the experimental onset voltage (4 kV). Simulations
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Fig. 2. Comparison of the graphs on the Np−En plane de-
fined by the constitutive relations Fi(En,Np) = 0.
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Fig. 3. IV-characteristic for the wire to grid (left) and wire
to plate (right) geometries.

show how the natural condition matches exactly the
experimental value, and the iterative condition as in
(7) still captures well the electrical behavior. One may
thus consider that in cases like this, even when lack-
ing measured currents, the ideal diode model is still
appropriate.

The latter geometry has a heated plate with a col-
lecting stripe and the emitter is lifted from the plate.
As shown in Fig 3, this case is not as well reproduced
as the former, due to the highly nonuniform En on the
electrode. This issue may be solved with a parameter
optimization, which has not yet been undertaken in
the present study. The current, being the most influen-
tial parameter for for the fluid dynamics and thermal
computing, was predicted with acceptable accuracy.
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Summary. A nanoscale double-gate MOSFET is simu-
lated by using a model based on the maximum entropy prin-
ciple (MEP) by including the heating of the crystal lattice.
The influence of this latter on the electrical performace of
the device is discussed.

1 Mathematical model and simulations

The main aim of the paper is to simulate the nanoscale
silicon double gate MOSFET (hereafter DG-MOSFET)
reported in Fig. 1, by including also the crystal heat-
ing which can influence the electrical properties of
the device and pose severe restrictions on its perfor-
mance. In fact the phonons emitted by hot electrons
create a phonon hot spot which increases the gener-
ated power density of the integrated circuits. This ef-
fect is becoming crucial by shrinking the dimension
of the devices which is now below 100 nm, a length
comparable with the wavelength of acoustic phonons
[1, 2].

We consider a DG-MOSFET with length Lx= 40
nm, the width of the silicon layer Lz = 8 nm and the
oxide thickness tox = 1 nm. The n+ regions are 10 nm
long. The doping in the n+ regions is ND(x) = N+

D =
1020 cm−3 and in the n region is ND(x) = N−D = 1015

cm−3, with a regularization at the two junctions by a
hyperbolic tangent profile.

Due to the symmetries and the dimensions of the
device, the transport is, within a good approximation,
one dimensional and along the longitudinal direction
with respect the two oxide layers, while the electrons
are quantized in the transversal direction. Six equiv-
alent valleys are considered with a single effective
mass m∗ = 0.32me, me being the free electron mass.

Since the longitudinal length is of the order of
a few tents of nanometers, the electrons as waves
achieve equilibrium along the confining direction in a
time which is much shorter than the typical transport
time. Therefore we adopt a quasi-static description
along the confining direction by a coupled Schrödinger-
Poisson system which leads to a subband decomposi-
tion, while the transport along the longitudinal direc-
tion is described by a semiclassical Boltzmann equa-
tion for each subband.

Numerical integration of the Boltzmann-Schrödinger-
Poisson system is very expensive from a computa-
tional point of view, for computer aided design (CAD)
purposes (see references quoted in [3, 4]) In [3] we
have formulated an energy transport model for the
charge transport in the subbands by including the non
parabolicity effects through the Kane dispersion re-
lation. The model has been obtained, under a suit-
able diffusion scaling, from the Boltzmann equations
by using the moment method and closing the mo-
ment equations with the Maximum Entropy Princi-
ple (MEP). Scatterings of electrons with acoustic and
non polar optical phonons are taken into account. The
parabolic subband case has been treated and simu-
lated in [4].

The crystal heating is included adding a further
equation for the lattice temperature TL in the same
spirit as in ref.s [5, 6]

ρcV
∂TL

∂ t
−div [K(TL)∇TL] = H, (1)

with ρ and cV silicon density and specific heat respec-
tively. H is the phonon energy production given by

H =−(1+PS)nCW +PS J ·E, (2)

where PS plays the role of a thermopower coefficient,
nCW is the electron energy production term with n
electron density, and J is the current. The electron
density is related to the surface density in each sub-
band by the relation

n = ∑
ν

ρν |φν |2

where φν are the envelope functions obtained solving
the Schrödinger-Poisson system. In [5] a more general
model for H has been proposed.

We stress that the lattice temperature enters into
the electron-phonon scattering and in turn in the pro-
duction terms of the balance equations for the elec-
tron variables. The main aim of the present paper is to
address the importance of the crystal heating on the
electric performance of the device.

A suitable modification of the numerical scheme
for the MEP energy transport-Schrödinger-Poisson
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system developed in [4] is proposed which includes
also the discretization of the lattice temperature bal-
ance equation via an ADI approach. Since the charac-
teristic time of the crystal temperature is about one or
two orders of magnitude longer than that of electrons,
a multirate time step method is employed as in [6].

In the figures we report some preliminary results.
It is possible to see a tremendous raise of the crys-
tal energy kBTL, which at room temperature is about
0.0259 eV, near the drain where the electron energy
has its maximum values due to the high electric field
present there. It is likely that the lattice temperature
reaches the silicon melting temperature. This poses
severe restrictions on the source/drain and sorce/gate
voltages with stringent design constraints.

Fig. 1. Schematics representation of the simulated DG-
MOSFET
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Summary. A recipe is introduced for the determination of
streamer inception regions and streamer propagation paths
from the electric background field. The method is based on
the equivalence of the streamer inception integral with a first
order partial differential equation (PDE). It can be easily
used in modern commercial multi-physics simulation tools,
and circumvents the cumbersome search for critical field
lines and their postprocessing.

Introduction

Streamer inception (SI) at an electrode and subse-
quent streamer propagation (SP) towards the counter
electrode are initial steps of dielectric gas breakdown
in nonuniform high electric fields [1]. Often, the aim
of electric field calculations is to identify the loca-
tions where SI can occur and to determine how far
streamers can propagate. This note introduces a sim-
ple procedure to calculate SI and SP from quasi-static
electric background fields using common SI and SP
criteria [1, 2].
We thus assume that the solution of the Laplace equa-
tion for the electric potential U(x) in the compact spa-
tial region of interest, Ω ⊂R3, is given for appropriate
boundary conditions. The boundary of Ω is denoted
by ∂Ω . Let the potential be positive at the electrode
under consideration, ∂Ω0 ⊂ ∂Ω , i.e., U0 =U(x)> 0
for x ∈ ∂Ω0 (Dirichlet boundary condition). Assume
further that the potential at the counter electrode(s)
is smaller, for instance grounded, such that the field
lines of the electric field, E =−∇U , point away from
∂Ω0. The SI criterion is associated with the critical
electron avalanche size and is formulated as an inte-
gral condition to the effective ionization coefficient
α(E) along a field-line path γ where α is positive and
which ends at ∂Ω0 [1, 2],1∫

γ
α(E)ds ≥Ccrit (1)

with field strength E(x) =| E |. For a field distribution
E(x) in an arbitrary geometry, it is not a priori obvi-
ous which are the critical field lines satisfying Eq. (1);
they are not necessarily related to electrode locations
with maximum field.

1 The integral (1) gives lnN/N0, where N is the number
of electrons in an avalanche, and N0 is the number of
starting electrons. For negative α , electrons recombine
or are attached.

The required search for and extraction of information
on field lines from electric simulations for realistic ge-
ometries, as it is needed for (1), is usually not a fea-
ture provided by typical commercial E-field simula-
tion tools. But we will show that there is a simple way
to determine the critical SI region Γ ⊂ Ω , and thus
the critical electrode region, ∂Γ0 = Γ ∩∂Ω0, without
cumbersome postprocessing.

Streamer Inception (SI)

We introduce the scalar field variable ϕ(x), which sat-
isfies the 1st order PDE

−v ·∇ϕ = α(E)Θ(α) (2)

where Θ is the Heaviside theta-function such that the
right side vanishes for negative α , and

v(x) =
E
E

(3)

is the normalized vector field along the field lines.
Equation (2) means that the derivative of ϕ along the
backward direction of the field lines (i.e., towards the
electrode ∂Ω0), equals α . Hence the solution of Eq.
(2) is the integral of α along field lines and equal to
the streamer integral (1), provided ϕ = 0 in regions
where α ≤ 0. The latter condition is ensured by using
a homogeneous Dirichlet boundary condition, ϕ = 0,
at the counter electrode(s), where the flow lines of v
end. The theta-function in Eq. (2) ensures integration
only for α ≥ 0. The SI region Γ , where streamers will
emerge, is then obtained from ϕ(x) ≥Ccrit. Note that
because Γ ⊂ Ω is a volume region, the procedure al-
lows also the determination of electrodeless SI.

Steamer Propagation (SP)

A SP model has to predict where and how far the
emerging streamers will go. If they reach the counter
electrode, dielectric breakdown may occur. Streamer-
to-leader transition is not discussed here [4]. A simple
SP model makes use of the observation that a streamer
length increase requires a roughly constant voltage
drop, which can be associated with a field Es along
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the streamer path. The potential drop along a streamer
of length s is then [4]

Us(s) =Us,0 +Ess (4)

where Us,0 can be interpreted as the streamer head
voltage. If it is assumed that streamers follow field
lines, the path can be found by solving the ordinary
differential equation (ODE) for the location x(t) of,
say, the streamer head

dx
dt

= v(x)h(∆U, t) (5)

with initial condition x(0) ∈ ∂Γ (or, here, Γ0) for
t = 0, and ∆U =U0 −U(x) is the voltage drop along
the streamer line. Note that t is equal to the streamer
length s because | v |= 1 (v is not the true streamer
velocity but its direction vector; the true speed, which
is typically of the order of mm/ns [3] is not needed
for determining the streamer length for many practi-
cal cases). The prefactor h(∆U, t) is either 1 or 0, de-
pending on whether the SP criteria is satisfied or not.
The prefactor h ensures that the streamer stops if the
local potential drop is insufficient for further propaga-
tion. For brevity, the considerations are here restricted
to Us,0 = 0, where h =Θ(∆U −Ess).
The assumption that streamers follow field lines may
not always be valid, as was critically discussed in
Refs. [4, 5]. Nevertheless, generalized models might
be taken into account in our simple propagation model
by a redefinition of v(x) in Eq. (5) [4].

Results

The incorporation of our SI approach in typical com-
mercial multi-physics simulation tools, which usually
solve 2nd order PDEs, requires a mimicry of the 1st

order PDE (2) with a 2nd order PDE of the form
D∆ϕ − v ·∇ϕ = α(E). The structural difference be-
tween them leads to a singularly perturbed problem
(i.e., the limit D→ 0 is not equivalent to D= 0). How-
ever, the solution of Eq. (2) can be approximated with
sufficient accuracy for practical purposes, if D is small
enough and the boundary conditions to ϕ are appro-
priately chosen. In particular, the disturbance of the
solution by the boundary condition at ∂Ω0 should be
negligibly small. Because for D = 0 one has ∂sϕ = α
at ∂Ω0, one must have D ≪ 1/ | ∂E ln(α)∂sE |, and
the boundary condition must be n ·∇ϕ = −α , where
n denotes the surface normal vector at ∂Ω0.
As an example, we consider a tip-plate geometry in
normal air, where [6] α = p[k(E

p − Λ)2 − A] with
k = 1.6 mmbar/kV2, Λ = 2.2 kV/(mm bar), A = 0.3
1/(mm bar), p = 1 bar, tip-plate distance 19 cm, tip ra-
dius 1 cm, and Es = 0.5 kV/mm. A result for U0 = 80
kV is shown in Fig. 1; the SI voltage, when the first
streamer appears is ca. 67 kV. The SI region is visible

as the small dark area in front of the tip. The voltage
when the first streamer crosses the gap is for this case
Ubd = 95 kV.

Fig. 1. Tip-plate geometry with simulated equipotential
curves, SI region in front of the tip (insert), and streamer
lines (simulation tool: Comsol; streamer lines with ”parti-
cle tracing” feature).

Conclusion

Streamer lines associated with the common SI and SP
criteria used in electrical engineering, can be calcu-
lated directly from standard multi-physics simulation
tools without cumbersome postprocessing of electric
field line data, provided the tool exhibits at solvers
for an additional linear PDE (for SI) and an ODE (for
SP).
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Summary. The paper proposes an efficient method for the
modeling of high frequency electromagnetic field effects,
such as skin or proximity effects, inside on-chip metallic
conductors. Compact sub-models obtained by using an elec-
tromagnetic field discretization approach based on the Fi-
nite Integration Technique in which frequency dependent
Hodge operators are used, are connected to magnetic cir-
cuits that describe inductive couplings.

1 Frequency Dependence

Designers of integrated circuits require models of pas-
sive components which describe all relevant electro-
magnetic field effects at high frequency. These effects
are quantified by the Maxwell equations of the elec-
tromagnetic field. In the Finite Integration Technique
(FIT), by applying the global form of electromag-
netic field equations on the mesh elements (elemen-
tary faces and their borders), a system of differen-
tial algebraic equations, called Maxwell Grid Equa-
tions (MGE) is obtained [2]. Due to high conductivity
(σ ≫ ωε), the electromagnetic field inside metallic
conductors can be considered a magneto-quasi-static
(MQS) one. MGE for MQS regime are combined with
the Hodges operators, which describe the material be-
havior

B = µH, J = σE ⇒

⇒ ϕ = Mµ um = M−1
ν um, i = Mσ ue, (1)

where the following global variables have been used:
electric and magnetic voltagesue, um, and magnetic
fluxesϕ and conduction currentsi, that are associated
to the grids elements in a coherent manner.

In the classical FIT approach, the discrete Hodge
operatorsMν andMσ and are constant diagonal ma-
trices, which can be built by independent averaging
of material constantsν = 1/µ andσ over each cell.
In order to describe field effects at high frequency
such as skin and proximity effects, the cell dimen-
sions have to be much less than the skin depthδ =
√

2/(ωµσ), which is 6.7µm for Cu at 100 GHz and
15 µm at 20 GHz. In order to keep the number of
cells at a reasonable level, non-uniform grids could be
used, with peripheral cells smaller than internal ones.
Even so, the number of cells required by a reasonable
accuracy can be relatively high. To avoid this draw-
back, it was proposed to replace the Hodge operators

used in classical FIT with others appropriate for the
description of high field effects in conductors [3].

By solving the complex Helmholtz equation for
the electric field in a rectangular homogeneous cell
having the conductivityσ and the permeabilityµ , of
dimensions:a (along the Ox axis), 2band 2c(along
Oy and Oz, respectively), we found that the complex
admittance of the cell along the Ox direction is

Y =
8

π2R0

∞

∑
k=1

1
(2k−1)2

[

tanh(λkb)
λkb

+
tanh(µkc)

µkc

]

,

(2)
whereR0 = a/(4σbc) is theD.C. resistance of the an-
alyzed cell along the Ox direction, and the complex
numbersλk andµk are given by

λk =

√

γ2+

[

(2k−1)π
2c

]2

, (3)

µk =

√

γ2+

[

(2k−1)π
2b

]2

, (4)

whereγ2 = iωµσ is the complex diffusion constant in
the conductor. Relation (2) does a smooth connection
between theD.C. valueR0 and the value given by a
strong skin depth formulaa/(4(b+c)δ ) (Fig. 1).

The first results carried out in FIT with FredHO on
a simple test case having an analytical solution taken
as reference, are given in Table 1 and Fig. 1 and show
its efficiency both with respect to the computational
effort and error. FredHO is able to catch not only the
dependence of theA.C. rezistence with respect to the fre-
quency, but also the frequency dependence of the conductor
inner inductivity.
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Table 1. Validation of FIT with FredHO

No. Relative
DoFs. error[%]

Analytic - 0
Classical FIT, uniform grid 770 31
Classical FIT, non-uniform grid 667 3
FIT with FredHO 5 0.0006
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Fig. 2. Frequency characteristic - with or without FredHO.

2 Inductive Effects

Our models of the inductors consist of two coupled circuits:
an electric and a magnetic one. The electric circuit includes
frequency dependent reactances inside conductors and RC
sub-circuits outside, whereas the the magnetic circuit de-
scribes inductive (magnetic) couplings. Magnetic hooks are
placed in the holes of each fundamental loop of the electric
circuit.

The magnetic circuit is driven by ”voltage” sources (ac-
tually magnetic voltage sources), controlled by the inde-
pendent loop currents of the electric circuit (co-tree cur-
rents). The electric induced voltages are modeled by voltage
sources placed in the co-tree branches of the electric circuit,
which are controlled by the time derivative of the magnetic
circuit ”currents” (actually magnetic fluxes). The magnetic
reluctances are associated to fundamental current loops and
they are extracted directly from the field solution. The con-
trolling by time derivatives of magnetic fluxes is obtained by
means of a third ”derivative” subcircuit. Thus, the model ex-
tracted becomes compatible with any circuit simulator, in-
cluding standard Spice. Contrary to VPEC or other partial-
inductance/reluctance approaches [5, 6] our reluctances are
associated to fundamental current loops and they are ex-
tracted directly from the field solution. By using the loop-
reluctance matrix instead of partial reluctances/inductances
(”K elements”), the sparsification is very effective and ro-
bust (the passivity is not lost), which is an essential re-
quest [1,4].

3 Conclusion

In frequency domain simulation, high frequency field ef-
fects can be taken into consideration in a very effective man-
ner, if the Hodge operators depend on the frequency. From
the computational resources point of view, this is more ef-
ficient than using a fine discretization grid inside the con-
ductors, even if this implies some matrix re-assembling at
every frequency sample. In this paper this technique is com-
bined with the use of magnetic circuits describing inductive
effects in order to obtain compact models for planar induc-
tors. Our presentation will describe in detail this technique
and will show results for real benchmarks.
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Summary. In this work we present the foundations of a nu-
merical formulation based on the Boundary Element Method
for grounding analysis developed for the authors in last
years. Furthermore, a revision of main applications of this
numerical approach to some problems in electrical engi-
neering practice is shown.

Main goals of an earthing system are to safeguard
that persons working or walking in the surroundings
of the grounded installation are not exposed to dan-
gerous electrical shocks and to guarantee the integrity
of equipment and the continuity of the power supply
under fault conditions. Thus, the equivalent resistance
of the electrode should be low enough to assure the
current dissipation mainly into the earth, while max-
imum potential differences between close points on
the earth surface must be kept under certain maximum
values defined by the safety regulations [1–3].

Although the electric current dissipation is a well-
known phenomenon, the computing of grounding grids
of large electrical substations in practical cases present
some difficulties mainly due to the specific geometry
of these grids [4, 5].

In the last years, the authors have proposed a nu-
merical approach based on the transformation of the
Maxwell’s differential equations onto an equivalent
boundary integral equation. This integral approach is
the starting point for the development of a general
numerical formulation based on the Boundary Ele-
ment Method which allows to derive specific numer-
ical algorithms of high accuracy for grounding ana-
lysis embedded in uniform soils models [6]. On the
other hand, the anomalous asymptotic behaviour of
the clasical computer methods proposed for earthing
analyis can be rigorously explained identifying dif-
ferent sources of error [4]. Besides, the Boundary El-
ement formulation has been extended for grounding
grids embedded in stratified soils [7, 8].

This methodology has been implemented in a CAD
tool for grounding systems comprising all stages of
the analysis: the preprocessing, the computing and the
postprocessing, including the calculation of the char-
acteristic safety parameters [9]. Furthermore, high-
efficient convergence acceleration techniques have been
also derived improving the earthing analysis for the
case of layered soil models [10]

In 2005, the authors proposed a methodology for
the analysis of a common and very important en-

Fig. 1. Grounding grid plan and situation of the two railway
tracks in the surroundings of the electrode.

Fig. 2. Potential distribution (×10 kV) on the earth surface
due to the energization of the grounding grid considering
the phenomena of the transferred potentials by the tracks.

gineering problem in the grounding field: the prob-
lem of transferred earth potentials by grounding grids
[11]. “Transferred earth potentials” refer to the phe-
nomenon of the earth potential of one location appear-
ing at another location with a contrasting earth po-
tential. This transference occurs, for example, when
a grounding grid is energized up to a certain voltage
(tipically, the Ground Potential Rise) during a fault
condition, and this voltage —or a fraction of it— ap-
pears (or it is “transferred”) out to a non-fault site by
a buried or semiburied conductors: communication or
signal circuits, neutral wires, metal pipes, rails, metal-
lic fences, etc., leaving the substation area.

The danger that can imply this potential transfer-
ence to people, animals or the equipment is evident,
especially because in some cases it is produced in un-
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expected and non-protected areas [2]. While the pre-
vention of these hazardous voltages has been tradi-
tionally carried out by combining a good engineer-
ing expertise, some crude calculations and even field
measurements, an accurate determination of the trans-
ferred earth potentials by grounding grids can be cur-
rently performed by using computer methods: in [12],
the authors proposed a numerical methodology for the
case of uniform soil models, and the generalization
for stratified soil models was published in [13].

Figure 1 shows the plan of the grounding grid of
an electrical substation and the situation of two tracks
in the surroundings of the electrode, as an application
example of transferred earth potential analysis. The
grounding grid has 408 cylindrical electrodes (diame-
ter: 12.85 mm), it is buried 0.80 m. and its maximum
dimensions are 145×90 m2. The resistivity of the soil
is 60 Ωm and the GPR considered is 10 kV. There are
also two tracks —with a length of 130 m (diameter: 94
mm)— buried 0.10 m. Figures 2 and 3 show the po-
tential distribution on the earth surface computed by
using a Boundary Element formulation for transferred
earth grounding voltages in uniform soil models. In
both graphs, it can be observed the modification of
the potential mapping on the earth surface due to the
presence of the tracks and the voltage level induced
on them.

Finally, most recently the authors have proposed
a methodology for the analysis of grounding grids
buried in soils which present some finite volumes with
very different conductivities. In our opinion, these
kinds of numerical models should allow for exam-
ple the computational modeling of earthing systems
of underground compact substations [14].
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Fig. 3. TOTBEM Postprocessing module: 3D visualization
of the potential distribution on the earth surface.
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7. I. Colominas, J. Gómez-Calviño, F. Navarrina, and M.
Casteleiro, “Computer analysis of earthing systems in
horizontally and vertically layered soils”, Elect. Power
Syst. Res., 59, 149-156, 2001.

8. I. Colominas, F. Navarrina, and M. Casteleiro, “A nu-
merical formulation for grounding analysis in stratified
soils”, IEEE Trans. Power Del., 17, (2), 587-595, Apr.
2002.

9. J. Parı́s, I. Colominas, X. Nogueira, F. Navarrina, and
M. Casteleiro, “Numerical simulation of multilayer
grounding grids in a user-friendly open-source CAD
interface”, Proceedings of the ICETCE–2012, IEEE
Pub., New York, 2012

10. I. Colominas, J. Parı́s, F. Navarrina, and M. Casteleiro,
“Improvement of the computer methods for grounding
analysis in layered soils by using high-efficient conver-
gence acceleration techniques”, Adv. Engrg. Soft., 44,
80-91, 2012

11. Nichols N., Shipp D.D., “Designing to avoid hazardous
transferred earth potentials”, IEEE Trans. Ind. Appl.,
1A-18, 340–347, July 1982.

12. I. Colominas, F. Navarrina, and M. Casteleiro, “Analy-
sis of transferred earth potentials in grounding systems:
A BEM numerical approach”, IEEE Trans. Power Del.,
20, (1), 339–345, Jan. 2005.

13. I. Colominas, F. Navarrina, and M. Casteleiro, “Numer-
ical Simulation of Transferred Potentials in Earthing
Grids Considering Layered Soil Models”, IEEE Trans.
Power Del., 22, (3), 1514–1522, July 2007.

14. I. Colominas, J. Parı́s, X. Nogueira, F. Navarrina,
and M. Casteleiro, “Grounding Analysis in Heteroge-
neous Soil Models: Application to Underground Sub-
stations”, Proceedings of the ICETCE–2012, IEEE
Pub., New York, 2012

146 SCEE2012

pfister
Rectangle



Body-fitting meshes for the Discontinuous Galerkin Method 
 

J. Cui1, S. M. Schnepp1, and T. Weiland1, 2 
 

1 Graduate School of Computational Engineering, Technische Universitaet Darmstadt, Dolivostrasse 15, 64293 
Darmstadt, Germany, cui@gsc.tu-darmstadt.de, schnepp @gsc.tu-darmstadt.de 
2 Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, 
64289 Darmstadt, Germany, thomas.weiland@temf.tu-darmstadt.de 
 

  
Summary. A mesh scheme is developed to deal with 
curved boundaries of the geometry using quadrilateral 
elements for the Discontinuous Galerkin Method 
(DGM). To achieve this, we first generate the inner 
part of the mesh in a structured manner and connect it 
to the curved boundary with a so-called buffer layer. 
Elements in the buffer layer employ a high order 
mapping to fit the boundary. We demonstrate high 
order convergence rates with an electromagnetic 
problem in a cylindrical cavity. Furthermore, we show 
that the frequency spectrum, which is extracted from 
the time-domain signal is clean, i.e., no spurious modes 
are observed in any of the examples considered. 
 
1 Introduction 
 
The DGM is a high order numerical method. In 
order to maintain its high order accuracy in the 
presence of curved objects, boundaries (surfaces) 
of the geometries have to be described with high 
order accuracy as well. The study in [1] shows 
that meaningful high order accurate results can be 
obtained only if the curved boundaries are 
considered with high order geometric 
approximations. In [2] problems in a cylindrical 
cavity are solved by pushing the straight edges of 
elements onto the exact circular boundary.  

Both implementations [1, 2] employ 
triangular meshes for the DGM and achieve high 
order convergence. We propose an alternative 
mesh scheme based on Cartesian grids. It 
generates quadrilateral meshes in a simple 
process for both, exact geometries and objects 
represented by Non-Uniform Rational B-Splines 
(NURBS). The scheme enjoys many advantages 
due to the ability of applying tensor product bases 
within quadrilateral elements (see e.g. [3, 4]). 
 
2 Body-fitting mesh scheme 
 
We generate a set of buffer elements in the gap 
between the exact curved boundary and the 
interior structured mesh as demonstrated in Fig. 1. 
Figure 2 (left) shows that if no buffer layer is 
applied, degenerated elements (marked with 
arrows) are likely to occur , which is guaranteed 
not to happen with the insertion of a buffer layer 
[5] (right). Figure 3 gives an example, where a  

Fig. 1: Buffer layer mesh scheme based on a 3-by-3 
regular mesh. 

 

 
Fig. 2: Curved elements of 2nd order without (left) and 

with (right) buffer layer scheme based on a 9-by-9 
regular mesh. 

 

 
Fig. 3: Buffer layer mesh with NURBS. The 

approximation can be exact for both a circle (left half) 
and an arbitrary curve (right half) using control points. 

 
mesh is generated fitting a geometry described by 
NURBS. For performing the local element 
deformation in the buffer layer we apply 
Transfinite Interpolation (TFI) [6]. 
 
3 Solving electromagnetic problems 
 
We consider transverse magnetic (TM) problems 
in a two-dimensional circular domain Ω  with the 
boundary Ω∂ . The Maxwell’s equations read as 
follows: 
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where 
xH  and 

yH  are the x- and y-components of 
the magnetic field vector, and 

zE  the z-
component of the electric field vector. The 
parameters ε and μ are the electric permittivity 
and the magnetic permeability, respectively.  

In this DGM approach, Legendre polynomials 
are applied as basis functions and the explicit 
leap-frog scheme is used for the time 
discretization [4]. The TM31 mode in a 
cylindrical cavity is chosen for a convergence 
study. The errors are measured in the L2 norm at 
the end of one periodic oscillation.  

  

Fig. 4: For a resonant mode in the cylindrical cavity, 
DGM with upwind flux shows (p+1) convergence 

using body-fitting meshes. 

 

Fig. 5: Analytical values (red squares) and captured 
numerical eigen-modes (blue stems) 

Figure 4 shows that the optimal convergence 
of (p+1) is achieved where p is the polynomial 
order. We also extracted eigenfrequencies via a 
Fourier Transform. The results in Fig. 5 were 
obtained using central fluxes and 32 elements of 
6th order. The eigenfrequencies obtained from the 
time-domain solution agree with the analytical 
ones for frequencies up to 0.8 GHz. Above this 
frequency the spatial resolution is insufficient 
leading to errors. 
 
4 Conclusions 
 
A body-fitting mesh scheme employing high 
order curved elements with the DG method is 
proposed. High order convergence rates in the 
presence of curved objects are observed. 
Furthermore, we extracted frequency spectra 
from simulations of a cylindrical cavity and 
found the agreement between the numerical 
results and the respective analytical solutions, i.e., 
clean spectra are obtained. 
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Summary. High order surface impedance boundary condi-
tions (SIBCs) have been coupled with the Boundary Ele-
ment Method (BEM) to produce an integral formulation for
the computation of the impedance matrix of multiconduc-
tor transmission lines of arbitrary cross-section [1, 2]. The
method extends the use of SIBCs into lower frequencies and
does so efficiently in that the solution of the integral equa-
tions need only be computed once whereas the solution may
be obtained over the whole applicable frequency domain. In
the case of different conductivities of the parallel conduc-
tors, care must be taken in the perturbation expansion when
the formulation is derived. The use of NURBS gives a bet-
ter representation of complex geometries and helps in the
computation of the radius of curvature and of the tangen-
tial derivatives of the unknowns. As a realistic application,
the per-unit-length parameters of sector shaped cables are
computed, showing the accuracy of the method.

1 Non-uniform rational B-splines

Recently, the so-called Isogeometric Analysis method
was introduced in the context of mechanical engineer-
ing [3], with the aim of improving the communica-
tion between Computer Aided Design (CAD) soft-
ware and numerical solvers. The method can be un-
derstood as a generalization of finite elements, where
the standard polynomial shape functions are replaced
by the functions used by CAD to describe the geome-
try.

The most widespread functions in CAD are prob-
ably non-uniform rational B-splines (NURBS), due to
their flexibility and their capability to design smooth
geometries. To define a NURBS curve first it is nec-
essary to introduce a partition of a reference interval.
NURBS basis functions are defined on this partition
as a set of piecewise rational polynomials. The curve
is then created as a linear combination of these basis
functions, by associating a control point to each one
of them [4].

The method we propose is based on NURBS to
represent the contour of the cross section of the con-
ductors, whereas the discrete solution is sought as a
non-rational spline. The use of NURBS not only gives
a good representation of complex geometries, but it
also allows an exact computation of the radius of cur-

vature, as required by high order SIBCs. Moreover,
a discretization based on high order B-splines is nec-
essary to compute the tangential derivatives appear-
ing in high order SIBCs, which can not be accurately
computed with low order BEM.

2 Integral formulation of the problem

We work on a two-dimensional geometry. Assume
that we have N different conductors, where electric
currents of intensity I j, j = 1, . . . ,N flow. We denote
by Γj the boundary of their cross sections. We choose
an eddy-current model written in terms of the mag-
netic vector potential A. In the 2D case this vector is
parallel to the conductors axis, for which A = Aez.

Splitting the potential into “source” and “eddy”
components, A = As +Ae, our continuous problem be-
comes

∆Ae = iωµσAe,
∫

Γj
1
µ

∂Ae

∂n = I j, (1)

[Ae]Γj =−As,
[

∂Ae

∂n

]
Γj

= 0, Ae = O
(

1
|r|

)
, |r| →+∞,

where As is an unknown, and is constant for each con-
ductor.

Denoting by G(r,r′) the fundamental solution of
the 2D Laplace equation, we define the integral oper-
ators associated to the single and double layer poten-
tials

S ju(r) =
∮

Γj

G(r,r′)u(r′)dγ(r′), (2)

D ju(r) =
∮

Γj

∂G(r,r′)
∂nr′

u(r′)dγ(r′), (3)

and denoting by K =
∂Ae

ext

∂n
, the solution of our prob-

lem satisfies the integral equation

As(r)+
N

∑
j=1

S jK(r) =
(
−I
2

+
N

∑
j=1

D j

)
Ae

int(r). (4)

3 Approximation by SIBCs

SIBCs can be applied whenever the skin depth
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2

δ =

√
2

ωµσ
, (5)

is “small enough”. Following [1,5], the fields are writ-
ten as asymptotic expansions in terms of δ , in the
form:

Ae
int(r,δ )'

3

∑
i=0

Ae,i
int(r)δ

i, (6)

As(r,δ )'
3

∑
i=0

As,i(r)δ i, K(r,δ )'
3

∑
i=0

Ki(r)δ i,(7)

and denoting the curvature of Γ by C , and by ∂ 2u
∂τ2 the

second tangential partial derivative, it holds:

Ae,i
int =

i

∑
l=1

ψl(Ki−l), with ψ1[u] = u,

ψ2[u] =
C

2
u, ψ3[u] =

3C 2

8
u+

1
2

∂ 2u
∂τ2 .

(8)

We then solve sequentially the problem, for i =
0, . . . ,3

As,i(r)+
N

∑
j=1

S jKi(r) =(
−I
2

+
N

∑
j=1

D j

)( i

∑
l=1

ψl(Ki−l(r))
)

,

(9)

together with the intensity conditions:
∫

Γj

1
µ

K0 = I j,

and
∫

Γj

1
µ

Kl = 0, for l = 1,2,3.

4 The case of different conductivities

Let us assume that the electrical conductivity of each
conductor is σ j, j = 1, . . . ,N, and define the small pa-
rameter for each conductor, δ j, as in (5). It is also
necessary to define a small parameter for the exte-
rior domain, that we can take, for instance, δ0 = δN .
With this choice of small parameters, we rewrite the
asymptotic expansions (7) based on δ0, whereas the
expansion (6) is written with a different δ j in each
conductor. Since the small parameters are different
for the conductors and the insulator, when consider-
ing the continuity conditions on the interface, it is not
possible just to equate the terms with the same coef-
ficients, but we must adjust the equations multiplying
and dividing some terms by powers of δ0.

5 Three sector-shaped cable

We have applied the method to the simulation of a
three sector-shaped cable with a shield, as the one
shown in Fig. 1. Each sector is made of copper, with

σ = 5.8× 107 S/m, and for the shield the electrical
conductivity is σ = 1.1×106 S/m. We notice that the
corners of each sector have been rounded, because the
SIBCs can only be applied in smooth geometries.

25 mm

19 mm

4.255 mm

Fig. 1. Geometry of the three sector-shaped cable

The contour of each sector is parametrized with
a quadratic NURBS with 9 elements, and the shield
with a quadratic NURBS formed by 4 elements. Then,
the problem is solved in a refined mesh formed by 45
elements on each conductor, and 20 elements on the
shield. Our results are compared in Fig. 2 with the
ones given by a commercial FEM software, in a mesh
formed by 187607 elements.
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tor of the three sector cable
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Summary. In this paper, Vilnius chaotic oscillator 
circuit is realized. Electronic circuit implementation of 
the Vilnius chaotic oscillator was realized using 
Multisim®. Also, the state equations of Vilnius chaotic 
oscillator are obtained by circuit theory. Dynamical 
analysis of Vilnius chaotic circuit is investigated by 
using dynamic state equations. The mathematical 
model of oscillator is constructed using MATLAB®. 
In addition, control of chaos in Vilnius chaotic 
oscillator is determined by using time delay feedback 
theory. Time delay feedback controllers are designed 
to eliminate chaos from system trajectories and 
stabilize the system at its equilibrium point. Numerical 
simulations results confirming the analytical analysis 
are shown and MATLAB® simulations are also 
performed to confirm the efficiency of the proposed 
control scheme. 
 
1 Introduction 
 
Chaos has not a general definition in literature but 
there are some properties of chaotic systems. The 
chaotic systems are very sensitivity to initial 
conditions. In order that any nonlinear system is able to 
behave chaotic, the system must be at least three 
dimensional for an autonomous system or two 
dimensional for non-autonomous system in the 
continuous system [1]. In chaos, Lyapunov exponents 
must be determined to identify whether the system 
behaves chaotic or not [2]. In the 3D system, one of the 
lyapunov exponents of the system must be positive, the 
second one negative and third one zero, respectively. 
So, in a third order dynamical system, the sign of the 
Lyapunov exponent could be positive, negative and 
zero for chaotic behavior [3]. In oscillator circuit, in 
order to can show chaotic behavior, autonomous circuit 
designed by resistor, capacitor and inductor elements 
must contain: 

 one or more nonlinear elements 
 one or more locally active resistors 
 three or more energy storage elements [4]. 

 
Many chaotic oscillator circuits are developed. Vilnius 
oscillator which has a simple circuit scheme is 
developed for educational purpose by A. Tamasevicius  
in  2005 [5].  
 
 
 

2 Vilnius chaotic oscillator and its 
dynamical analysis 
 
In this section, Vilnius chaotic oscillator circuit is 
shown in Fig. 1. 
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Fig. 1 Vilnius chaotic oscillator circuit 
 
This circuit is constructed in Multisim program. 
By changing the R3 resistor, dynamic analysis of 
circuit is analyzed using Multisim and simulation 
results are given in Fig. 2 

 
Fig. 2 Phase portraits of Vilnius circuit R=100, 220, 
350, 400, 495, 600 ohm  
 
Using KCL and KVL circuit theory, state equations of 
Vilnius chaotic oscillator circuit are obtained as shown 
in Eq. 1. 
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By using some transformations, dimensionless state 
equations may be obtained in Eq. 2. 
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Fig. 3 Matlab-Simulink model of circuit via state 
equations 
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Using Simulink model, phase portraits of circuit are 
obtained as shown in Fig. 4. 

 

 
Fig. 4 Phase portraits of circuit R=100, 220, 350, 
600 ohm using Matlab 
 
Also,  electronic circuit implementation of vilnius 
chaotic oscillator is realized and phase portrait of 
circuit are obtained by oscilloscope.  

 
Fig.5 Electronic circuit experiment  

 

 
Fig.6. Phase portrait of system R=100 ohm- Limit 
cycle 
 
3 Time delay feedback control of chaos 
in Vilnius chaotic oscillator 
 
In this section, control of chaos in Vilnius oscillator is 
realized by using time delay feedback control theory. 
The controller [6] is designed based on time delay 
feedback control scheme in Eq 3. 

))()((  txtxKu                                (3) 

Time delay feedback controller is applied to the 
Vilnius system as shown in Eq. 4 
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Finally, phase portraits of controlled Vilnius circuit 
will be obtained. 
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Summary. The creation of equivalent models of wave-
guide structures is a challenging task. This contribution re-
visites a method to establish systems of ordinary differen-
tial equations to model the transient dependency between
port voltages and currents of the structure based on real
eigenmodes. These equations can be derived either in an
impedance or admittance formulation. The method is il-
lustrated by the transfer properties of a rectangular wave-
guide. It is shown that the frequency domain impedance
parameters of this waveguide, obtained by an eigenmode
expansion, converge to the parameters which are commonly
known from literature.

1 Introduction

The computation of transfer functions of lossless ra-
dio frequency (RF) multiport structures is a common
issue related to scientific computing in electrical en-
gineering. A large variety of methods is discussed in
the literature to determine these transfer functions in
frequency domain. However, frequency domain ap-
proaches fail, if field filling and defilling processes
in RF structures [2, 4] or the response of these struc-
tures due to transient port stimuli are of interest. In
this contribution a modal expansion is employed to
transfer the electrodynamic wave equation with ex-
citation to a coupled first order ordinary differential
equation (ODE). This differential equation approxi-
mates the dependency of port quantities like volt-
ages and currents in an explicit time domain formula-
tion and is therefore referred to as lumped equivalent
model of the structure. In this context it is remarkable
that eigenmodes of the closed structure are suitable to
expand the fields in a device with waveguide ports.

However, in contrast to previous publications on
eigenmode expansions for multiport systems (see e.g.
[1, 3, 5, 6]) this contribution performs the expansion
using continuous fields and focusses on the creation
of structure’s equivalent ODE systems. In addition
to theoretical derivations, the procedure is exempli-
fied by means of a rectangular waveguide to obtain
a time domain equivalent ODE model for this wave-
guide in an impedance formulation. It is shown that
the frequency domain transfer function of the equi-
valent model converges to the well-known impedance
parameters of the waveguide, if an infinite number of
real eigenmodes is considered in the expansion.

2 Mathematical Modeling

For the derivation of waveguide structure’s equivalent
models Faraday’s law of induction

∇×E(r, t) =−µ
∂

∂ t
H(r, t)−Jm(r, t) (1)

and Ampere’s law

∇×H(r, t) = ε
∂

∂ t
E(r, t)+Je(r, t) (2)

are taken as a starting point. There, E(r, t) denotes
the electric field strength, H(r, t) the magnetic field
strength, ε a constant permittivity, µ a constant per-
meability, Jm(r, t) the magnetic and Je(r, t) the elec-
tric current density.

2.1 Impedance Formulation

The impedance formulation describes the transient
port voltages as a function of electric port currents.
Therefore, the magnetic currents are set to zero in (1).
Taking the curl of the resulting equation, using the
electric fields to be free of any sources and replacing
the curl of the magnetic fields by the r.h.s. of (2) leads
to the wave equation with electric current excitation:

∆E(r, t)− εµ
∂ 2

∂ t2 E(r, t) = µ
∂

∂ t
Je(r, t). (3)

The electric fields are expanded in terms of real eigen-
modes Ẽν(r) and a transient weighting factor xν(t):

E(r, t) =
N

∑
ν=1

Ẽν(r)xν(t). (4)

Note, that the eigenmodes Ẽν(r) satisfy

∆Ẽν(r)+ εµω̃
2
ν Ẽν(r) = 0 on Ω , (5)

n× Ẽν(r) = 0 on ∂Ωwall , (6)
n · Ẽν(r) = 0 on ∂Ωports, (7)

with the resonant angular frequency ω̃ν of the ν-th
mode. Condition (6) corresponds to perfect electric
material on the boundary of the waveguide, whereas
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(7) corresponds to perfect magnetic conducting mate-
rial on the cross section of the waveguide ports. Re-
placing the transient electric fields in (3) by (4), ex-
ploiting the orthogonality of the eigenmodes∫∫∫

Ω

Ẽν(r) · Ẽn(r)dr =

{
2Wν/ε, if ν = n,
0, if ν 6= n,

(8)

and utilizing the fact that the excitation current den-
sity can be expressed as a superposition of impressed
excitation current densities J̃port,m(r) im(t) on the cross
sections of all M waveguide ports

Je(r, t) =
M

∑
m=1

J̃port,m(r) im(t) (9)

leads to the ordinary differential equation

2Wν

(
ω̃

2
ν xν(t)+

∂ 2xν(t)
∂ t2

)
=

∂

∂ t

M

∑
m=1

fν ,m im(t).

(10)
Here Wν is defined as the energy stored in the ν-th
mode, im(t) the modal current of the m-th port and

fν ,m =
∫∫∫

Ω

Ẽν(r) · J̃port,m(r)dr. (11)

Equation (10) can be expressed for all N considered
eigenmodes and all M ports as the state equation

∂

∂ t


x̂1(t)
x1(t)

...
x̂N(t)
xN(t)


︸ ︷︷ ︸

x(t)

=


0 1 . . . 0 0
−ω̃2

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . −ω̃2

N 0


︸ ︷︷ ︸

Az


x̂1(t)
x1(t)

...
x̂N(t)
xN(t)


︸ ︷︷ ︸

x(t)

+
1
2



0 0 . . . 0
f1,1
W1

f1,2
W1

. . .
f1,M
W1

...
...

. . .
...

0 0 . . . 0
fN,1
WN

fN,2
WN

. . .
fN,M
WN


︸ ︷︷ ︸

Bz


i1(t)
i2(t)

...
iM(t)


︸ ︷︷ ︸

i(t)

.

(12)

The dependency of the voltages at the ports and the
inner states is described via the output equation

v1(t)
v2(t)

...
vM(t)


︸ ︷︷ ︸

v(t)

=


0 f1,1 . . . 0 fN,1
0 f1,2 . . . 0 fN,2
...

...
. . .

...
...

0 f1,M . . . 0 fN,M


︸ ︷︷ ︸

Cz


x̂1(t)
x1(t)

...
x̂N(t)
xN(t)


︸ ︷︷ ︸

x(t)

. (13)

Note that the state space system (12) and (13) with
the matrices {Az,Bz,Cz} is an equivalent ODE model
of the multiport waveguide structure in an impedance
formulation, since it describes the transient port volt-
ages as a function of transient port currents.

2.2 Admittance Formulation

The derivation of the state space systems in an admit-
tance formulation is similar to the procedure proposed
in section 2.1. However, for the admittance formula-
tion magnetic currents are used to excite the structure,
the expansion is performed using magnetic fields and
perfect electric conducting boundary conditions are
chosen on the port cross sections for the eigenmodes.

3 Application Example and Convergence

A homogeneously filled rectangular waveguide with
constant cross section carrying a TE10 mode is cho-
sen as an example. This structure is well suited for
validation and demonstration purposes as the eigen-
value problem (5) - (7) can be solved analytically for
this geometry. As a central result of this contribution
it is shown, that the frequency domain transfer func-
tion of the state space system (12) and (13) converges
to the analytically known impedance matrix Z(iω) of
the waveguide, if an infinite number of eigenmodes is
considered in the modal expansion:

lim
N→∞

Cz

(
iωI−Az

)−1
Bz = Z(iω). (14)

Here I ∈ RN×N denotes the identity matrix .

4 Summary and Conclusions

This work illustrates the derivation of ODE models in
an impedance and admittance formulation for lossless
RF structures based on real eigenmodes. The method
is exemplified by employing a simple waveguide. Fur-
thermore, the convergence of the method is discussed
for this test example.
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Summary. In this talk, we analyze the convergence of the
preconditioned GMRES method for the first order finite el-
ement discretizations of the Helmholtz equation in media
with losses. We consider a Laplace preconditioner and an
inexact Laplace preconditioner. Our analysis is based on
bounding the field of values of the preconditioned matrix
in the complex plane. The obtained results are illustrated by
numerical examples.

1 Introduction

Finite element discretizations of wave propagation
problems lead to very large, indefinite, non-hermitian,
and complex valued linear systems. One strategy to
solve these systems is to use a suitable Krylov sub-
space solver such as GMRES, CGN, BiCGStab (see
[6]) together with a preconditioner.

Finding good preconditioners for wave propaga-
tion problems has proven to be very difficult. The
number of iterations required to solve the linear sys-
tem depends strongly on the mesh density h and on the
wave-number κ . For Helmholtz equation, the depen-
dency between mesh density and the required number
of iterations is due to the Laplace-operator part. Sev-
eral preconditioners are capable of eliminating this
dependency, see e.g. [3, 4]. The κ-dependency is re-
lated to the indefiniteness of the problem. Eliminating
it has proven to be considerably more difficult.

Preconditioners for the Helmholtz equation can be
divided roughly into shifted-Laplace (see e.g [3, 4])
and two-level methods (see e.g. [1, 5]). The shifted-
Laplace preconditioners are successful in cutting the
growth in the condition number due to the Laplace op-
erator part. However, a κ-dependency in the required
number of iterations still remains in the precondi-
tioned system. The two-level preconditioners can elim-
inate this dependency, but are very expensive to eval-
uate.

In this talk, we consider the problem

−∆u− (κ2− iσ)u = f in Ω

u = 0 on ∂Ω
(1)

where κ,σ ∈ R, κ > 0,σ > 0. The domain Ω ⊂
Rd ,d = 2,3 and the load function f ∈ L2(Ω). We as-
sume that this problem is discretized using first or-
der finite elements on triangular of tetrahedral quasi-

regular mesh. The mesh density parameter is denoted
as h.

We present a field of values (FOV) based anal-
ysis for the convergence of the preconditioned GM-
RES method. We consider the Laplace and the inexact
Laplace preconditioner, in which the Laplace problem
is solved approximately by using an suitable iterative
method.

A FOV analysis has been given in [8] for Her-
mitian positive definite split preconditioners and for
shifted-Laplace preconditioner in [7]. The main dif-
ference compared to this work is that we estimate the
FOV by using methods similar to the ones applied in
the analysis of additive Schwarz preconditioners for
elliptic problems. The novelty of our approach is that
it allows us to analyze the inexact Laplace precondi-
tioners in detail and it can also be applied to analyze
two-level preconditioners.

The presented approach also takes the non-normal
nature of the linear system automatically into account.
This is especially important for inexact Laplace pre-
conditioners, as their non-normality is not solely re-
lated to the mass matrix. We can analyze these pre-
conditioners via an perturbation argument.

2 Field of values

The convergence of the GMRES method (see [6]) for
the linear system Ax= b is related to the minimization
problem

|ri|= min
p∈Pi

p(0)=1

|p(A)r0|, (2)

in which ri is the residual on step i and Pi the space
of polynomials of order i. Based on this minimization
problem, different convergence estimates can be de-
rived, see e.g. [2]. When the matrix A is no-normal,
the convergence can be related to the properties of the
pseudospectrum or the field of values (FOV).

The FOV is defined as the set

F (A) =
{

x∗Ax
x∗x

∣∣∣∣ x ∈ Cn, x 6= 0
}
. (3)

The convergence of GMRES is related to the dimen-
sions and the location of the FOV in the complex
plane. A simple estimate is given as
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|ri| ≤
(

s
|c|

)i

|r0|. (4)

In which s and c are related to the disk

D = { z ∈ C | |z− c| ≤ s }

containing the FOV, but not the origin.

3 Laplace preconditioner

The Laplace preconditioner P : Vh→Vh is defined as:
For each u ∈Vh find Pu ∈Vh such that

(∇Pu,∇v) = (u,v) ∀v ∈Vh. (5)

The matrix form of the operator P is K−1M, where
K is the stiffness matrix and M the mass matrix. The
right preconditioned linear system is

AK−1Mx̃ = b. (6)

The FOV for this system is characterized by two fol-
lowing Theorems.

Theorem 1. There exists a constant C > 0, indepen-
dent of h, σ , and κ , such that

F (AK−1M)⊂ [C(1−κ
2)hd ,Chd ]× [0,Cσhd ],

in which d is the spatial dimension.

Theorem 2. There exists a constant C > 0, indepen-
dent of h, σ and κ , such that F (AK−1M)⊂ S,

S =

{
z ∈ C

∣∣∣∣ chd− κ2

σ
ℑz≤ℜz≤Chd− κ2

σ
ℑz
}
,

in which d is the spatial dimension.

4 Inexact Laplace preconditioned

In practical computations, the solution to the Laplace
problem Kx = b would be replaced with some ap-
proximation x≈ K−1

N b.
We assume that such an approximation is obtained

with a symmetric iterative method convergent in the
‖ · ‖L2(Ω) and ‖ · ‖H1(Ω) norms. This is, there exists
constants γi,0 < γi < 1, i = 1,2 and C > 0, indepen-
dent on γ0 and γ1, such that for any u ∈Vh there holds

‖ENu‖H1(Ω) ≤Cγ
N
1 ‖u‖H1(Ω)

and
‖ENu‖L2(Ω) ≤Cγ

N
0 ‖u‖L2(Ω)

In which, EN is the error propagation operator relating
e0 to eN , i.e., error on step 0 to error on step N. A
suitable approximation can be obtained for example
with the multigrid method.

The FOV for the preconditioned system satisfies

F (AK̃−1
N M)⊆F (AK−1M)⊕F (A(K−1

N −K−1)M).

Bound for the FOV is obtained by combining an esti-
mate for the size of the perturbation set

F (A(K−1
N −K−1)M). (7)

with an estimate for the FOV for the Laplace precon-
ditioned system.

Theorem 1. There exists a constant C > 0, indepen-
dent of γ0, γ1, κ , h, and σ , such that

ℜF (A(K−1
N −K−1)M)⊂UR

and
ℑF (A(K−1

N −K−1)M)⊂UI

in which

UR =
[
−Chd(γN

0 +κ
2
γ

N
1 ),Chd(γN

0 +κ
2
γ

N
1 )
]

and

UI =
[
−Chd(γN

0 +σγ
N
1 ),Chd(γN

0 +σγ
N
1 )
]
.

where d is the spatial dimension and N the number of
iterations used to compute the preconditioned.

From theoretical point of view, the implication of this
theorem is that the number of iterations should be in-
creased when the parameter κ grows to keep the size
of the perturbation set small and the origin outside the
FOV.
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Summary.Planar structures are often used recently due 
to their many advantages. Transformers, power 
inductors and EMI filters are only a few components 
that are constructed using this technique. In order to 
increase their efficiency, parasitic capacitance (EPC) 
must be decreases and HF losses must be appropriate 
to their utilisation. In previous studies it was 
discovered that a shifted winding of the planar 
structures decreases EPC.This paper represents a study 
which aims at finding an optimum shifting of the 
windings, wich will decrease EPC and increase HF 
losses. 
 
 
1 Introduction in planar structures 
 
   Planar technology has many advantages such as 
improving high frequency (HF) characteristics, 
reducing size, lowering profile, achieving 
structural and functional integration, lowering 
manufacturing time and cost [1]. 

A planar integrated structure is composed of 
alternating layers of conductors, dielectrics, 
insulation and ferrite materials [2]. 

The difference between conventional and 
planar magnetic components is in terms of 
orientation of winding layers. Windings in a 
planar magnetic component have flat, wide and 
rectangular cross sections, and the core of a 
planar structure has a lower profile than that of a 
conventional structure. A comparation between 
planar and conventional structures is shown in 
Fig. 1. 

Planar structures also have disadvantaged like 
large footprint area, increased parasitic 
capacitance and low window utilization factor. 
Depending on the analyzed structure and its mode 
of operation, different parameters must be 
optimized.  

 
 
 
 
 

 
Fig. 1.Comparison between planar and conventional structure 

 

EMI filters can also be constructed as planar 
structures. In order to optimize their behavior, 
equivalent parasitic capacitance (EPC) and 
equivalent series inductance (ESL) must be 
reduced and because the role of EMI filters is to 
attenuate unwanted noise, a higher loss factor at 
high frequency is needed. 

Because the aim of this study is to improve 
planar structures with the same parameters and 
role as EMI filters, the EPC needs to be 
decreased and the HF losses of the planar 
structure increased.  
 
 
2 Presentation and validation of the 
technique used to increase HF losses 
 

In previous studies, the shifting of the winding 
was demonstrated to be the best method to 
decrease EPC [4] , but it was not considered to be 
a factor that influences the HF losses. The authors 
considered this as an alternative to the nickel 
plating of the copper conductors, which is also a 
method to increase HF losses, and researched the 
way that shifted windings affect the loss values. 

The original structure from Fig. 2 was the 

object of this study. In previous researches, the 
conductors of winding3 were placed so as to 
decrease EPC. A study of the loss variations 
depending on the shifted windings was 
conducted. Winding3 was shifted to eight 
different positions and the losses were calculated 
with the help of a 2D numerical modeling 
program of the electromagnetic field. 
The notation SO from Fig. 3 represents the 
original structure and the other notations are 
referring to structures with different shifting of 
winding3, for example bd1.1 represents a 

 
Fig. 2.  Model to be studied [3]. 
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structure with winding3 shifted to the right with 
1.1mm from its original position. 
 

 
 

Fig.3. Structure losses depending on winding3 shifting for the 
original structure 

 
   The conclusions of this study are that the 
shifted winding affects the high frequency losses. 
From further investigations, the results show that 
for the structures with pure copper conductors, 
the optimum or maximum value of the losses is 
present for the structure with winding3 shifted 
with 1.1 mm as shown in Fig. 4. 
 

 
 

Fig. 4.  Variation of losses with the shifting of winding3 for 
the original structure 

 
3 Study of the optimal positioning of 
the conductors  
 
   In this chapter, the optimum structure from the 
HF losses point of view is presented. As for the 
EMI filters, the value for the losses must be 
increased at HF. The results were obtained using 
an software program previously tested.  
   The problem of determining the optimal 
location of the conductors is considered to be a 

magnetostatic problem, so for the numerical 
analysis module of the field the boundary element 
method (BEM) was chosen. BEM is a semi-
analytical method, which leads to accurate results 
using a small number of mesh elements and is 
fast in terms of computing time.  
  Because the number of “mobile” elements is 
relatively small, the algorithm of optimal design 
is based on conjugate gradient method (CG) with 
an optimum step in the search direction.   
  The paper presents the optimum structure 
starting from simple structures with one or two 
mobile conductors, reaching more complex ones. 
The results are compared with the optimal results 
for the EPC reduction. 
   Finally, is attempted to be obtained an optimum 
result considering the losses and also the parasitic 
capacitance. 
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Validation of the Potential Method; comparing measurements of a
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Summary. Earlier reported is the potential method, which
addresses the EFIE (Electric Field Integral Equation) or
MFIE/CFIE by applying the Hodge decomposition theo-
rem to a one-form related to the physical current J. In this
approach, one solves for two unknown scalar potentials,
Φ and Ψ , which carries the same information as J. Here
we compare calculations on a 100◦ dihedral with measure-
ments. The calculations are made on meshes with different
triangle sizes, which give a simple convergence study. The
computational burden is also compared with other methods.

1 Introduction

We look at the electromagnetic scattering problem
in frequency domain. More precisely, we first ad-
dress the Electric Field Integral Equation, EFIE, [1].
In the standard formulation using the method of mo-
ments (MoM), objects which are large compared to
the wavelength will produce linear systems which
easily becomes to large to solve with direct solvers.
This problem can be tackled in various way, and one
option is to use the potential method, [2].

This method has been reported earlier, [3], [4],
demonstrating proof of concept under various circum-
stances. In this work, we will make more quantitative
evaluations, comparing measurements on a 100◦ dihe-
dral (see Fig. 1) with calculations using the potential
method. We will make a simple convergence study,
i.e, compare calculations using different meshes, and
also compare the number of unknowns with other ap-
proaches.

2 Formulation

In standard notation, with a plane wave illuminating a
PEC surface S and in an adapted ON-basis, the EFIE
(electric field integral equation) reads

∀r ∈ S :−E0e−ikzx̂ =̂ (1)

ikcµ0(I +
1
k2 ∇∇·)

∫
S

g(r,r′)J(r′)dS′.

Here J is the unknown current, g is the standard
Green’s function and =̂ means tangential equality. By
the replacement

h(r,r′) = g(r,r′)eik(z−z′), K(r′) = eikz′J(r′) (2)

and by the application of Hodge decomposition to K
(under the assumption that S is homeomorphic to a
sphere), so that, in vector calculus notation,

K = ∇SΦ + n̂×∇SΨ ,

we can express the EFIE in terms of the complex
scalar functions Φ and Ψ , which serve as potentials
for K. n̂ is normal to S. ∇S is the intrinsic (to S) gra-
dient operator.

The resulting equation is obtained by multiplying
(1) with eikz, and then use (2) to express everything in
terms of Φ and Ψ . The resulting equation is not given
here, see for instance [3]. Rather, we focus on pos-
sible advantages and results. Two major advantages
are the facts that 1) After multiplication with eikz, the
left hand side of (1) becomes an exact one-form (and
this is true whether on regards −E0x̂ as a one-form in
R3 or as a one-form on S), and 2) The replacement
K(r′) = eikz′J(r′) allows for potentially sparser sam-
pling, and hence reduced numerics. (C.f. [5].)

3 Numerical results

We have performed calculations on a 100◦ dihedral
with dimensions as in Fig. 1. The calculations have

20
cm

20
cm

λ = 3 cm

E
h

E
v

angle
k

Fig. 1. The dihedral with its dimensions. The opening angle
of the dihedral is 100 ◦, and the dihedral is illuminated with
a plane wave with f=10 GHz from above at different angles.
The convention for horizontal and vertical polarization is
indicated in the figure.

been performed with different meshes, resulting in a
simple convergence study. The calculations are also
compared with measurements and finally the number
of unknown are compared to the number of unknown
suggested by a commercial software. In Fig. 2, calcu-
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Fig. 2. Measurements vs. calculations for different mesh
sizes, horizontal polarization (see Fig. 1). Numbers in the
legend indicate typical side length in the mesh.

lations are compared with measurement for horizon-
tal polarization (see Fig. 1). A reasonable agreement
with measurements and calculations are obtained with
a mesh size with a typical side length of 10 mm. Com-
pared with the wavelength λ , this is only ∼three tri-
angles/wavelength which is well below the rule of
thumb which is typically eight or ten triangles/wave-
length. With our mesh, we have 3406 triangles and a
total number of unknown which is 3410. Using the
commercial software FEKO, (in standard MoM set-
ting), it is for the given geometry and frequency sug-
gested a mesh which gives 127000 unknowns. Al-
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Fig. 3. Measurements vs. calculations for different mesh
sizes, vertical polarization (see Fig. 1). Numbers in the leg-
end indicate typical side length in the mesh.

though we do not claim our results to be as accurate
as with FEKO, the reduction of unknowns is substan-
tial. On the other hand, using the same meshes for cal-
culations of the scattering from vertical polarization,
the results are less satisfactory, see Fig. 3. By refin-
ing the mesh, clear improvements are noticed for the
mesh with a side length of ∼5 mm, especially around
incidence angle around 0◦, although the agreement is
worse around incidence angles around 25◦. It might
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Comparisons mesh refinement for E
v
 polarisation
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m
2

 

 

Measurements
~ 6 mm side
~ 5 mm side

Fig. 4. Measurements vs. calculations for mesh refinements,
vertical polarization (see Fig. 1). Numbers in the legend in-
dicate typical side length in the mesh.

be claimed that this mesh size is close to the rule of
thumb, but the mesh is only refined at the illuminated
part, with parts in the shadow having a coarser mesh.
As a result, the number of unknown N is 16872, which
is still a good factor less than 127000. As the cost
for solving the resulting linear equation scales as N3,
there is a noticeable difference.

4 Conclusions

We have applied the potential method for calculations
on a dihedral with opening angle of 100◦. It is indi-
cated that the non-convexity of the dihedral requires
different mesh sizes in different polarizations. How-
ever, in both cases, reasonable results are produced
when the number of unknowns are well below the
number of unknown given by meshes following the
rule of thumb, saying that the side lengths should be
∼ λ/10. This decreases the memory requirements as
well as the time for solving the produced linear sys-
tem, as compared to standard MoM.
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Summary. An implementation of the broad band Surface
Impedance Boundary Condition (SIBC) for the high or-
der Discontinuous Galerkin (DG) method in the time do-
main is presented. In order to treat the frequency dependent
impedance function a set of auxiliary differential equations
is introduced. The effect of the DG approximation order on
the accuracy will be studied, and the results will be com-
pared with the conventional time domain Finite Element
Method.

1 Introduction
Time domain modeling is very attractive for wide
band electromagnetic problems, since it allows to com-
pute for a large range of frequencies in a single sim-
ulation. However, when the frequency band of inter-
est is wide, the dispersive nature of material param-
eters, i.e. their variation with respect to frequency,
needs to be considered. In order to model disper-
sive electromagnetic materials in time domain simu-
lations, one generally needs to evaluate one or more
convolution integrals. Clearly a direct computation of
convolution terms is too expensive for every prac-
tical computation. For this purpose, several numeri-
cally efficient approaches have been proposed. One
approach is a recursive convolution [7]. Another tech-
nique which is particularly suited for explicit time do-
main simulations is the Auxiliary Differential Equa-
tion (ADE) method. In the following, ADE is ap-
plied in the context of SIBC for arbitrary frequency
dependent electric conductivities. Finite Difference
Time Domain method (FDTD) [11] is widely used
for time domain simulations. It leads to explicit time
stepping and it is straightforward to implement. How-
ever, FDTD has a two important disadvantages: First,
the method loses substantial accuracy at curved ge-
ometrical boundaries. Second, FDTD is at most 2nd
order accurate, thus, it suffers under large numeri-
cal dispersion errors at high frequencies. Finite Ele-
ment Method (FEM) [12] is very accurate as far as
the modeling of arbitrary geometries is concerned.
However, the time domain FEM leads to implicit time
stepping [5], and is therefore numerically extremely
expensive. The Time Domain Discontinuos Galerkin
Method (DG) [3] combines the advantages of the

aforementioned methods: it is free of numerical dis-
persion, modeling of arbitrary geometries is straight-
forward, and due to the global discontinuity of the
basis functions, the resulting time stepping scheme
is explicit. However, due to the discontinuity of ba-
sis functions at cell interfaces, unphysical spurious
modes will occur. A possible cure to the problem of
spurious modes is the application of various penaliza-
tion methods as proposed, e.g., in [3], [1].
In this study, we will describe the implementation of
a wide band SIBC for higher order DG by means
of the ADE method. Furthermore, the effect of dis-
cretization order, rational approximation order for the
impedance function as well as the impact of penal-
ization on the accuracy of DG simulations with SIBC
will be investigated.

2 DG Method
In this study, we will consider the Maxwellian initial
value problem. The three-dimensional computational
domain Ω is discretized into N non-overlapping el-
ements, and on the boundary ∂Ω , the SIBC is ap-
plied. Within an element, the electric field E and the
magnetic flux density B are approximated by a linear
combination of vectorial basis functions φE and φB,
respectively. As both of the basis functions, φE and
φB, are defined cell-wise without global continuity, in
the DG method, a numerical flux approach is applied
in order to impose the neccessary continuity at the in-
terfaces between mesh cells in the weak sense. A de-
tailed despription of the method as well as of the ap-
proximation functions, φE and φB, used in the present
implementation is given in [1].

3 The SIBC Approach
Modeling of media with large but finite electrical
conductivities typically leads to very dense meshes
and thus to small time steps as required for stabil-
ity in explicit time domain simulations. Therefore,
it is desirable to exclude the lossy media from the
computational domain. This can be done by intro-
ducing at the boundary surface of the conductive do-
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main impedance-like conditions, which provide a re-
lationship between the tangential electric field to the
tangential magnetic field components. The classical
SIBC was introduced by Leontovich (cf. [10]). It as-
sumes the lossy surface to be planar and ignores the
tangential variation of the field quantities. The error
of the Leontovich SIBC is order of O(δ 2), where δ is
skin depth, which makes it especially suitable for high
frequencies. [4]. The second order SIBC [6] takes
into account also the curvature of the surface. It is,
furthermore, possible to construct higher order, thus,
more accurate SIBC by taking into account, in addi-
tion, the tangential variation of the field components
along the lossy surface [8]. When the thickness of the
conductive medium is of the order of skin depth, the
electromagnetic fields on the different sides of lossy
medium interact with each other. Also this type of
problems can be modeled by means of SIBC, using
e.g. Sarto’s [9] approach.

4 Approximation of Impedance Function
In order to transform the dispersive impedance func-
tion into the time domain, it is first approximated in
the frequency domain as a series of rational func-
tions [2]. The rational approximation for the tangen-
tial magnetic field can be written as:

Y (ω)Et ≈ Y0Et +
P

∑
i=1

YiEt

jω −ωi
, (1)

where Et is tangential electric field on the surface, P is
the order of the rational approximation, Y0 free space
admittance, Yi and ωi are approximation parameters.
Let us rewrite the rational approximation given in (1)
as Y (ω)Et ≈ Y0 +∑

P
i=1 Yi. The the SIBC condition

transforms in the time domain to

Y0 = Y0Et and
d
dt

Yi −ωiYi = YiEt . (2)

Equation (2) represent the auxiliary differential equa-
tions of the ADE method which need to be solved
for in the time domain together with the full set of
Maxwell’s equations.

5 System of Equations
The system of discrete equations to be solved in the
time domain can be written as:

CEe+ d
dt Mµ h = 0

CHh− d
dt Mε e = CY ∑

P
i=0 Yi

Y0 = Y0et
d
dt Yi −ωiYi = Yie for i = 1...P,

(3)

where CE and CB are curl-matrices obtained by high
order DG discretization, CY is so called ”admittance
flux” matrix, and Mµ and Mε are block-diagonal

mass matrices. In the full paper, the numerical accu-
racy and efficiency of this approach with respect to
discretization order for different rational function ap-
proximations (1) will be discussed.

6 Summary
Dispersive SIBC will be implemented for time do-
main DG method in order to model a wide frequency
band at a single simulation. The frequency dependent
conductivity of lossy surfaces is considered in time
domain by auxiliary differential equations. We will
study the accuracy of the solution for different DG
discretization orders and impedance function approx-
imations, and compare our results with the standard
SIBC-FDTD method.
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School of Computational Engineering at Technische Uni-
versität Darmstadt.
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Summary. Simulation of low-frequency magnetic fields in
electric machines demands for implicit time integration.
For the nonlinear reluctivity of the ferromagnetic yoke, a
smooth material curve is needed to avoid convergence prob-
lems in Newton’s method. In this paper the Brauer model
is extended to fit the material behavior at low fields more
accurately and to guarantee physically correctness for high
fields. Furthermore, a procedure to obtain optimal parame-
ters is developed and discussed using a numerical example.

1 Introduction

Typically Finite Element (FE) based simulations of
eddy currents use the magnetic vector potential A and
the curl-curl equation

σ
dA
dt

+∇× (ν∇×A) = Js , (1)

with conductivity σ , reluctivity ν and source current
density Js. For iron parts the material relation H(B) =
νB becomes nonlinear, where B = ∇×A is the mag-
netic flux density and H the magnetic field strength.
We neglect anisotropy and hysteresis. Hence, we can
apply H = νB in terms of H := ‖H‖2 and B := ‖B‖2.
Typical models are spline interpolations of measure-
ments, [3], and Brauer’s model, [1]:

Hbr(B) = νbr(B2)B = (k1ek2B2
+ k3)B .

Both allow a simple calculation of the reluctivity ν =
ν(B2) and its derivative d

dB2 ν , needed in the compu-
tation of material matrices occurring in the space dis-
cretization of (1), see e.g. [2]. Brauer’s model is well
understood, e.g., a sensitivity analysis shows that cur-
rents and fluxes through machines are most sensitive
w.r.t. to perturbations in k2 followed by k1 and k3. The
model is sufficiently accurate for medium fields but
the behavior for low fields (Rayleigh region) and high
fields (full saturation, i.e., dH

dB = ν0 as for vacuum)
cannot be represented accurately.

2 Extened Brauer model

For high fields the material behaves like vacuum

Hsat(B) = ν0(B−Bs)+Hs .

For low fields the dependence of B on H is quadratic:

Low Field Medium field

Saturation

H

Hs

Hm

Bm Bs B

Fig. 1. Regions of the H(B)-curve.

Hray(B) =
√

1
4α2ν2

init
+ B

α
− 1

2ανinit

with initial reluctivity νinit and Rayleigh constant α .
In combination we obtain a H(B)-curve as shown in
Fig. 1, with interface points (Bm,Hm) and (Bs,Hs).

Let us determine the coefficients of an extended
Brauer model s.t. the global model is continuous dif-
ferentiable. The classical model does not simply al-
low to replace low field and high field parts. A shift of
the Brauer model enables to fulfill the continuity and
differentiability conditions at Bm:

Hebr(B) = (k1(ek2(B−Bm)2 −1)+νd,m)(B−Bm)+Hm

with νd,m := dH
dB Hray(Bm) the differential reluctivity at

the end of the Rayleigh region. We define the function

H(B) :=


Hray(B) if 0≤ B < Bm ,

Hebr(B) if Bm ≤ B < Bs ,

Hsat(B) if Bs ≤ B .

(2)

To fix the model parameters k1 and k2, we use the
continuity conditions Hebr(Bs)=Hs and dH

dB Hebr(Bs)=
ν0 , and solve each equation for k1:

k1 =

Hs−Hm
Bs−Bm

−νd,m

ek2(Bs−Bm)2 −1
, (3)

k1 =
ν0−νd,m

(2k2(Bs−Bm)2 +1)ek2(Bs−Bm)2 −1
. (4)

From (3) and (4) we find a nonlinear equation for k2 >
0, which is solvable under the conditions ν0 > νd,m

0 <
Hs−Hm
Bs−Bm −νd,m

ν0−νd,m
< 1

3

and Bs > Bm > 0, Hs > Hm > 0, ν0 > νd,m .
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Fig. 2. Low field region.

The Rayleigh constant can be obtained by α :=
(Bm/Hm− 1/νinit)/Hm. Therefore the model (2) can
be fixed from the data p := (νinit,Bm,Hm,Bs,Hs).

3 Optimal Model Parameters

Let us consider measurement points (B j,H j), j = 1,
. . . ,N, of a ferromagnetic material. We assume mono-
tonicity of the data and a distinctive Rayleigh region.

To find optimal model parameters we solve a non-
linear least squares (NLS) problem, i.e.,

min
p

N

∑
j=1

(H(B j;p)−H j)
2

H2
j

. (5)

Proper initial guesses are important because of the
nonliterary. A procedure for this purpose is given by:

i) The fraction of first non-zero measurement points
approximates νinit. Then find index r that mini-
mizes (Hr+1−Hr)/(Br+1−Br). (Br,Hr). It is an
approximation to (Bm,Hm). Compute α and νd,m.

ii) Approximate the beginning of the saturation re-
gion with the last measurement points. Solve (3)
and (4) for k1 and k2 by replacing ν0 with the se-
cant slope νN of the last two measurement points.

iii) If νN ≈ ν0, use the last point as approximation of
(Bs,Hs). Otherwise solve dH

dB Hebr(Bs) = ν0 for Bs
and compute Hs = Hebr(Bs).

iv) Solve the NLS problem (5).

4 Example

For validation we created test data from (2) using
νinit = 400mH−1, (Bm,Hm) = (0.5T, 70Am−1) and
(Bs,Hs) = (2T, 100kAm−1). We sample the first
two regions with 8 equidistant points. We incorporate
Gaussian measurement noise by H̃i = max(0,Hi ·(1+
σXi)), where Xi ∼N (0,1) and σ = 0.1. Fig. 2 and
3 show the fitted results. The proposed initial guess is
sufficient to achieve convergence of the NLS problem.
We obtain a curve close to the original curve.

The extended Brauer model is tested in a 2-D FE
simulation of a transformer at no-load. Simulation re-
sults with the extended Brauer model with parameters
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Fig. 3. Medium field region.
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Fig. 4. Errors |i− î|/(|i|+0.1) of no-load current. The cur-
rent peaks are at 0.01, 0.03 and 0.05.

from above are used as a reference. For the spline
interpolation (cubic and Fritsch-Carlson spline) we
smoothened the noisy samples in the Rayleigh region
with a moving average filter. Errors of the no-load cur-
rent i through the device are depicted in Fig. 4.

The original Brauer model is the computationally
least expensive but yields large errors in comparison
to the reference solution. It cannot match the shape
of the material curve for low and high fields. Spline
interpolated measurements yield medium errors but
need a high number of Newton steps to converge,
cf. [4]. The extended Brauer model is only slightly
more expensive than the original Brauer model but is
the most accurate also in Fig. 4. It also recovers the
reference curve.
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Summary We investigate the high frequency eddy 

currents and compute the Common Mode Impedance 

of a PWM controlled induction motor by Finite 
Element simulations. It is shown that in order to 

determine machine parameters accurately, three-

dimensional analysis taking into account explicitly the 

eddy currents induced in the iron core laminations is 

necessary. 

 

1 Introduction 
 

Modern induction machines are most often 

powered by Pulse Width Modulation (PWM) 

voltage source inverters. Although PWM 

switching clearly improves the overall 

performance and efficiency of the drive system, it 

also promotes the formation of common mode 

voltages which may evoke harmful high 

frequency bearing currents [1]. While the PWM 

switching frequency is usually in the order of 20 

kHz, the short rise time of the pulses may induce 

higher frequency currents of several MHz in the 

housing, laminated core as well as in the shaft 

bearings of the machine. Therefore, when 

analysing PWM controlled induction machines, a 

broad frequency range has to be considered.  

An essential parameter in the equivalent circuit 

representation of electric drives is the Common 

Mode Impedance (Zcom). This quantity allows to 

compute among others the bearing currents for 

different machine operation conditions. In the 

following, Zcom will be determined exclusively 

from Finite Element (FE) simulations. Using this 

approach substantial information can be obtained 

already in the design stage without necessitating 

on-machine measurement data.  

In the FE analysis of induction machines, several 

symmetries can be exploited. Usually, for the 

middle part a two-dimensional (2D) projection of 

the motor cross section is considered [2]. In this 

paper, however, a fully three-dimensional (3D) 

analysis is proposed which allows to take into 

account explicitly the eddy currents induced in 

the core laminations. The end-windings, which in 

general do additionally contribute to Zcom, are not 

considered in the present analysis. The Common 

Mode calculation is completed by assembling the 

parameter matrices extracted from the middle and 

eventually the end parts of the machine using 

transmission line theory [3]. 

 

2 Lamination Modelling 
 

Eddy currents in core laminations have been 

found to have a large impact on the transmission 

line parameters and, thus, on the Common Mode 

Impedance of PWM driven induction machines 

[3,4]. Magnetic machine cores are specifically 

designed to supress eddy currents at supply 

frequency. However, higher frequency voltage 

harmonics arising from PWM switching may lead 

to pronounced eddy currents loops in the core. 

This is because the skin depth in the iron at PWM 

frequencies becomes comparable or even smaller 

than the thickness of lamination sheets. 

When employing laminated materials in FE 

analysis it is often not possible to model every 

single iron sheet because this would lead to 

enormous computational costs. Instead, the 

lamination is treated as a homogeneous material 

adopting equivalent electromagnetic properties. A 

well-known homogenisation model utilizes a 

frequency dependent equivalent permeability for 

the iron core given by, 

 

    
    

  

         

         
   

     

 
  (1) 

where      is the permeability of iron, 2b the 

thickness of the plate and δ the skin depth at a 

given frequency [5]. The magnetic field problem 

for the homogenised core in the middle part of 

the motor reduces to a planar 2D problem. While 

this approach allows for very efficient 2D-FE 

analysis, certain inaccuracies can be expected. 

First, the equivalent model (1) assumes a uniform 

primary magnetic field with no variation in the 

cross-sectional plane of the motor (cf. [5]). 

Second, possible edge effects in the eddy current 

distribution arising at the winding yoke 

transitions are not considered. Finally, in the 
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equivalent permeability model the iron core is 

considered to be non-conductive. Hence, the field 

reaction to the eddy current loops is neglected. 

The conductivity of iron is only introduced in 

post-processing for calculating electric losses. 

Thus, in particular in the high frequency range, it 

may be necessary to perform a more detailed 

eddy current analysis which takes into account all 

of these effects in core laminations. 

 

3 Fully 3D-FE Approach 
 

For testing purposes, a circular conductor model 

is considered (see Fig. 1). The copper conductor 

is surrounded by a laminated iron core. The 

lamination layers consist of oxide insulation 

sheets with a thickness of 0.65 mm. The width of 

the air gap between conductor and core is 0.1 

mm.  

 
Fig. 1: Single conductor model with 5 material 

blocks: a) copper, b) air gap, c) iron, d) air and e) 

oxide layer. 

 

In the homogenized equivalent permeability 

model (1), the eddy current problem can be 

solved analytically. For comparison, the 

geometry is discretized with a 3D mesh and 

analysed by means of FE simulations. In the first 

set of simulations the equivalent permeability is 

employed while in the second fully 3D-FE 

analysis including the iron and oxide layers is 

applied. Resulting electric losses and stored 

magnetic energy in the conducting parts of the 

arrangement are shown in Fig. 2. While the 

homogenized model gives quite accurate results 

in the copper conductor at lower frequencies (< 1 

kHz), electric losses in the iron are subject to 

major errors (46% in this model), independent of 

frequency. However, at low frequencies, copper 

losses are much greater than iron losses. At 

higher frequencies, the field solution in the 

copper conductor is increasingly influences by 

the lamination and large deviations occur for both 

electric losses and magnetic energy. Considering 

the present analysis, the homogenization 

approach (1) might not be valid for high 

frequency simulations of induction motors. 

Therefore, the fully 3D approach will be applied 

to calculate the Common Mode Impedance of an 

existing 240 kW motor and will be presented in 

the full paper. 

 

 

 
Fig. 2: Electric loss (top) and stored magnetic 

energy (bottom) for the single conductor model. 
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Summary. Systematic improvement of the performance
and lifetime of organic light-emitting devices (OLEDs) are
facilitated by electrical characterization through experiments
and simulations. We model charge transport in organic dis-
ordered materials with the aid of a numerical 1D model
for different experimental setups such as current-voltage
curves, current transients and electrical impedance spec-
troscopy. For large-area OLEDs we couple the anode and
cathode with the 1D model leading to an efficient 1+2D ap-
proach.

1 Introduction

Although the commercial success of organic light-
emitting devices (OLEDs) in displays and lighting
proceeds rapidly, further research is necessary to im-
prove the efficiency and lifetime. Numerical simula-
tions help to reduce the number of prototype itera-
tions. Electrical characterization of devices and mate-
rials is crucial as it sheds light on the physical mod-
els of charge carrier transport in disordered, organic
semiconductors. Charge transport and recombination
models have been introduced several years ago for
organic LEDs [1–5]. However, organic semiconduc-
tors differ considerably from their inorganic counter-
parts, not only by low carrier mobilities and long re-
combination times but also by the disorder. Taking
the disordered nature of organic materials into ac-
count leads to a description in terms of a Gaussian
density of states (DOS) which affects the mobility
of charge carriers and the diffusion coefficient. The
Gaussian DOS enhances the nonlinearities and the
coupling between the equations. These circumstances
prevent the use of classical drift-diffusion solvers.
With the aid of a one-dimensional numerical OLED
model we are able to simulate different operating
conditions such as current-voltage curves [6], dark-
injection measurements and impedance spectroscopy.
We conduct steady-state, transient and small-signal
analysis for the 1D OLED model and compare them
with experiments. For lighting applications OLED
panels are used that need to be as homogeneous as
possible. To take this requirement into account we
couple the 1D model to two 2D domains.

2 Physical Model

The drift-diffusion model (1) and (2) with the or-
ganic model ingredients (such as a Gaussian density
of states and the use of the Fermi-Dirac statistics) are
discretized with the finite volume method, the cur-
rent expression (3) with the Scharfetter-Gummel dis-
cretization [7]. The resulting system of discretized
equations is then solved in a coupled manner with
Newton’s algorithm for the transient as well as the
steady-state case [8].

∇ · (ε∇ψ) = q(n f +nt − p f − pt), (1)

∇ · Jn−q( ∂n
∂ t ) = qR(n f , p f ),

∇ · Jp +q( ∂ p
∂ t ) = −qR(n f , p f ),

(2)

Jn = −qn f µn∇ψ +qDn∇n f ,
Jp = −qp f µp∇ψ−qDp∇p f .

(3)

For the small-signal analysis, the steady-state volt-
age V0 is modulated with a sinusoidal voltage with the
amplitude V ac and with the angular frequency ω: V =
V0 +V aceiωt . The potential ψ and the charge densities
p and n can be expanded into a steady-state and har-
monic term, e.g. ψ(x, t) = ψ0(x)+ ψac(x)eiωt where
the ac components are complex-valued. To solve the
small-signal equations, the solution of the dc prob-
lem for V = V0 is required. After inserting the ex-
pansions into the linearized drift-diffusion model we
obtain a linear system of equations for the unkown
ac components and thus for the ac current Jac. From
the complex admittance Y = Jac/V ac, the small-signal
capacitance C and conductance G can be obtained.
Charge traps originate in impurities or material degra-
dation and affect the transport. In Fig. 1 we show the
effect of different charge trap types on the normal-
ized capacitance at different frequencies. Fast traps
are in quasi-equilibrium with free carriers, the tran-
sit time is longer than the trapping time whereas for
slow traps the transit time is shorter than the trapping
time. Slow traps enhance the capacitance at low fre-
quencies while fast traps follow the dynamics of the
trap-free case [9]. Similarly, charge traps affect cur-
rent transients and current-voltage curves.
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Fig. 1. Normalized capacitance of different trap types at var-
ious frequencies.

3 2+1D Approach for Large-area OLEDs

Aiming for a fast PC model for large-area OLEDs
we have to take into account that realistic OLED
structures consist of transparent anodes with a rela-
tively low electrical conductivity. This affects the ho-
mogeneity of the OLED. Metal grid structures are
applied to large-area OLEDs to improve the situa-
tion. To quantify the potential and temperature drop
in large-area OLEDs we extend the 1D modelling of
the organic material to higher dimensions. The 2+1D
approach captures the important features of the trans-
port process, and accounts for the high aspect ratio
between the in-plane and the through-plane dimen-
sions of OLEDs. In comparison to full 3D models,
the 2+1D approach requires a reduced number of de-
grees of freedom, but still provides the lateral poten-
tial and temperature distribution. We make use of our
in-house FEM tool (SESES) that allows the nonlinear
coupling of 2D domains with the aid of the 1D model
as shown in Fig. 2. The connection between the anode
and cathode can either be:

• a parameterized experimental curve
• an analytical formula
• or a numerical model.

In Fig. 2 we show an OLED panel before optimizing
the metal grid layout. No metal structure is present to
improve the homogeneity of the OLED.

4 Conclusions

In this paper, we present a 1D model for organic LEDs
that is applied to different operating conditions such
as steady-state, transient and ac response. We inves-
tigate different charge trap types and their influence
on the frequency-dependent capacitance. Further, we
propose a 2+1D modeling approach for large-area
OLEDs.

Fig. 2. Coupling of the 1D and 2D domains in an organic
LED model. We display the potential drop before a metal
grid structure is added.
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Summary. This work is devoted to the robust and efficient
solution of an optimal control problems for time-harmonic
or time-periodic eddy current problems in the presence of
pointwise state constraints imposed on the Fourier coeffi-
cients. For the discrete version of the linearized and re-
duced optimality systems of the Moreau-Yosida penalized
minimization problems, condition number estimates of the
preconditioned systems are provided. We show, that block-
diagonal preconditioners can lead to parameter-robust and
efficient solution strategies for these kind of problems.

1 Introduction

During recent years, the importance of solving opti-
mization problems with constraints in form of partial
differential equations has been growing. Usually, the
partial differential equation is treated as a constraint,
and the minimizing solution is determined by solving
the corresponding optimality system. Typically, this
approach leads to very bad condition systems of lin-
ear equations, and therefore the iterative solution of
these kind of equations is a delicate issue.

In [2,3] an optimal control problem with a simple
time-periodic parabolic partial differential equation as
the state equation is considered. The optimality sys-
tem is discretized in terms of the harmonic balance
finite element method, and parameter robust solvers
are constructed for the resulting frequency domain
equations. The aim of this work is to extend these
ideas also to the eddy current optimal control prob-
lem, cf. [4,5]. Therefore, we consider optimal control
problems, where the partial differential equations is
given by time-harmonic or time-periodic eddy current
problems. Indeed, in the time-periodic setting, we es-
tablish the harmonic balance finite element method, in
combination with efficient and robust solvers for the
resulting frequency domain equations, as a powerful
tool for solving optimal control problems in compu-
tational electromagnetics.

Furthermore, we include pointwise state constraints
in our model, since they may be important to filter out
undesired singularities in the solution of the eddy cur-
rent problem.

2 Optimal control problem

We concentrate on the solution of the following opti-
mal control problem:

min
(yc,ys,uc,us)∈H0(curl)2×L2(Ω)2

J(yc,ys,uc,us), (1)

subject to
curl(ν curlyc)+ωσys = uc, in Ω ,

curl(ν curlys)−ωσyc = us, in Ω ,

yc×n = ys×n = 0, on ∂Ω ,

(2)

and to the pointwise state constraints

yj
a(x)≤ yj(x)≤ yj

b(x), a.e. in Ω , j ∈ {c,s}. (3)

The quadratic cost functional is given by

J(yc,ys,uc,us) :=
1
2 ∑

j∈{c,s}

[
‖yj−yj

d‖
2
0 +λ‖uj‖2

0

]
.

The regularization parameter λ > 0, the model param-
eters σ , ν and ω , and yc

d,y
s
d,y

c
a,yc

b,y
s
a,ys

b ∈L2(Ω) are
given data.

Following [6], we use a Moreau-Yosida regular-
ization, that penalizes the pointwise state constraints,
i.e., we add the penalty term

1
2ε

∑
j∈{c,s}

‖max(0,yj−yj
b)‖

2
0 +‖min(0,yj−yj

a)‖2
0,

ε > 0, to the cost functional J. The resulting mini-
mization can be solved by deriving the (reduced) opti-
mality system. Due to the penalized state constraints,
the optimality system becomes nonlinear. The non-
linearity can be dealt with in terms of a primal dual
active set strategy, that is known to be equivalent to
the semi-smooth Newton method [1]. At each New-
ton step, a two-fold saddle point problem has to be
solved. Typically, the model parameters σ , ν and ω ,
the regularization parameters λ and ε , as well as the
discretization parameter h, coming from the finite el-
ement approximation, impinge on the convergence of
any iterative method applied to the unpreconditioned
problem. Therefore, the aim of this paper is to present
a preconditioning technique for the robust and effi-
cient solution of the saddle point system at each New-
ton step.

169 SCEE2012



2

3 Block-diagonal preconditioner

The finite element discretization of the penalized, lin-
earized and reduced optimality system of (1)-(3), yields
the linear system of equations

A x = b, (4)

where the system matrix A is given by

A =


M+ 1

ε
ME c 0 Kν −Mω,σ

0 M+ 1
ε

ME s Mω,σ Kν

Kν Mω,σ − 1
λ

M 0
−Mω,σ Kν 0 − 1

λ
M.

 .

Here Kν corresponds to the stiffness matrix, M to the
mass matrix, Mω,σ to a weighted mass matrix, and
ME c and ME s to the mass matrices on the active sets
E c and E s, respectively. In order to solve (4), we fol-
low the strategy used in [5] and construct a precon-
ditioned MinRes solver. We propose and analyze the
block-diagonal preconditioner

C = diag (
√

λE,
√

λE,
1√
λ

E,
1√
λ

E), (5)

where E = Kν + Mω,σ + 1√
λ

M. We show, that the
condition number of the preconditioned system can
be estimated by a constant, that is independent of the
mesh size h, the regularization parameter λ , the model
parameters σ , ν , and ω , as well as the active sets E c

and E s from the primal dual active set strategy, i.e.,

κ(C−1A )≤ c 6= c(ω,σ ,h,λ ,E c,E s).

Therefore, the number of MinRes iterations required
for reducing the initial error by some fixed factor
δ ∈ (0,1) is independent of ω , σ , h, λ , E c, and E s.
In practice, the diagonal blocks E of (5) are replaced
by appropriate efficient and parameter robust precon-
ditioners.

4 Time-periodic optimization

The presented solving technique provides a robust
tool for solving optimal control problems with a time-
harmonic eddy current problem as the state equation.
Indeed, the theory can be extended to time-periodic
optimal control problems of the form:

minJ(u,y) =
1
2

∫ T

0
‖y−yd‖2

0dt+
λ

2

∫ T

0
‖u‖2

0dt,

subject to
σ

∂y
∂ t

+ curl(ν curly) = u, in Ω × (0,T ),

y×n = 0, on ∂Ω × (0,T ),
y(0) = y(T ), in Ω ,

(6)

with state constraints associated to the Fourier coeffi-
cients of y. Due to the periodic structure, a time ap-
proximation of the state y and the control u in terms
of a truncated Fourier series can be used, i.e.,

y(x, t) =
N

∑
k=0

yc
k cos(kωt)+ys

k sin(kωt).

Due to the linearity of (6), we obtain a decoupling of
the frequency domain equations with respect to the
individual modes k = 0, . . . ,N. For each mode, a lin-
ear system of equations, that obtains high structural
similarities to (4) has to be solved. Hence, an efficient
and parameter robust solver can be constructed in the
same manner as done in the previous section. Indeed,
this approach is an extension the harmonic balance fi-
nite element method to optimal control problems.

5 Conclusion

The method developed in this work shows great po-
tential for solving both time-harmonic and time-periodic
eddy current optimal control problems in an efficient
and robust way.
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Summary. During atmospheric entries, vehicles can be ex-
posed to strong electromagnetic radiation from gas in the
shock layer. We propose and analyze silicon carbide and
glassy carbon structures to increase the reflection of radi-
ation. We performed numerical optimizations of photonic
structures using an evolutionary strategy. Among the con-
sidered structures are layered, woodpile, porous and guided-
mode resonance structures. The role of structural imperfec-
tions on the reflectivity is analyzed.

1 Introduction

Practical applications of photonic crystals (PhCs) are
diverse [1, 2]. An interesting, but not yet practically
realized, application of PhCs is as radiation shields for
atmospheric re-entry of space vehicles. Electromag-
netic radiation from ionized gas in the shock layer can
constitute up to 30-50% [3] of the overall heat flux for
lunar return trajectories, although for relatively short
times. For Jupiter entries, on the other hand, most of
the heating is radiative [4]. Therefore, in addition to
protection against convective heating, a reentry ther-
mal protection systems (TPS) should also be designed
for radiation shielding. Ideally, the design should be
tuned to the radiative spectra of a specific planet and
specific entry conditions.

One of the easiest way to design radiation shields
for atmospheric re-entry is with layered media [5].
Provided the two constituent materials possess a suf-
ficient dielectric contrast and low absorption, broad-
band radiation shields with high omnidirectional re-
flection can be designed [6]. However, applications
such as atmospheric re-entry impose many additional
constraints on the material properties (thermal, me-
chanical, etc.). Therefore, finding a suitable pair of
materials can be very demanding.

Currently, TPS for the most demanding atmo-
spheric re-entries are made of highly porous carbon
based materials. These materials, for example, PICA
(phenolic-impregnated carbon ablators), possess many
of the required thermal and mechanical properties.
However, these materials are strong absorbers of ra-
diation and therefore currently offer no protection at
all from radiative heating. On the other hand, if these
materials could be structured in such way that high

reflection is obtained, radiative heating of the vehi-
cle during re-entry could be reduced. We analyze the
potential of glassy carbon and silicon carbide as ra-
diation shields for Earth atmospheric re-entry. The
effects of structural imperfections on reflectivity are
also analyzed.

1.1 Optimization goal

The goal is to design a radiation shield that maximizes
the total reflection of normally incident unpolarized
radiation uν , shown in Fig. 1.

Fig. 1. (Red curve - experimental data of spectral radia-
tion distribution, obtained at atmospheric re-entry relevant
conditions [7] blue dashed curve - spectrum smoothed with
Gaussian window function of full width ∆ f = 10 THz.

Therefore, the function to be maximized is:

〈Ruν
〉=

∫
RΣuν dν

utot
, utot =

∫
uν dν , (1)

where RΣ is the total reflection of the incident unpo-
larized radiation:

RΣ = 0.5(Rs +Rp), (2)

where Rs and Rp are the sum of reflection efficiencies
for the s- and p-polarization, respectively:

Rs,p = Rs,p
0 +∑Ds,p

i , i =±1,±2, . . . (3)

here the summation is performed over the propagating
diffraction orders in the upper air half space.
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For numerical optimization, we used evolution-
ary strategy (ES) algorithms. Based on previous ex-
perience [8], it is very powerful for real parameter
optimization problems and outperforms genetic algo-
rithm, particle swarm optimization, and other meth-
ods in most cases. We used an (m+n) evolutionary
strategy with adaptive mutation for the optimization.
Here m is the initial number of parents and n is the
number of children created in each generation.

Some of the structures to be optimized are shown
in Fig. 2.

Fig. 2. (From left to right: guided mode resonance structure,
woodpile, porous-reflector
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Summary. A novel Discontinuous Galerkin Finite Element
Method for space–time electrodynamic problems is pre-
sented. The method employs space–time Trefftz basis func-
tions that satisfy the underlying partial differential equa-
tions exactly in an element–wise fashion. A major advan-
tage of Trefftz approximations is their high accuracy that
in many cases leads to spectral convergence. First computa-
tional results are presented.

1 Introduction

Discontinuous Galerkin Finite Element Methods (DG-
FEM) [1–4] are a major class of tools to numeri-
cally simulate complicated Electro–Magnetic (EM)
systems. Here we present a highly accurate type of
DG-FEM. A distinguishing new feature of the method
is the use of Trefftz basis functions instead of the
traditional generic polynomials. By definition space-
time Trefftz basis functions satisfy Maxwell’s equa-
tions exactly in an element-wise fashion. The method
is, hence, a Discontinuous Galerkin Trefftz Finite El-
ement Method (DGT-FEM) [5]

2 Development of the Method

This section consists of three parts. First, we state
Maxwell’s equations in (1+1)D. Second, we derive a
weak formulation of Maxwell’s equations and finally
introduce Trefftz-type basis functions.

2.1 Maxwell’s Equations in 1D

For a wave traveling in the x-direction, with electric
and magnetic fields polarized as E := Ey and H :=Hz,
we can write Maxwell‘s equations in the one dimen-
sional form(

∂t
∂x

)T
·
(

ε 0
0 1

)
·
(

E
H

)
= 0,

(1)(
∂t
∂x

)T
·
(

0 µ

1 0

)
·
(

E
H

)
= 0.

Here µ is the magnetic permeability and ε is the di-
electric permittivity. We assume the space-time do-
main of interest Ω to be free of any sources. With the
abbreviations

ηε :=
(

ε 0
0 1

)
, ηµ :=

(
0 µ

1 0

)
and ∇ :=

(
∂t
∂x

)
,

we cast Maxwell’s equations into the form

∇
T ·ηε ·F = 0 and ∇

T ·ηµ ·F = 0. (2)

Here the EM field vector F reads

F :=
(

E
H

)
.

2.2 Weak DG-Form of Maxwell’s Equations

We obtain the weak form of (2) by multiplying (2)
with a vectorial test function

v :=
(

vE

vH

)
.

and integrating over the domain of interest. This leads
to the following form∫

Ω

(
∇

T ·ηε ·F
)
vHdA+

∫
Ω

(
∇

T ·ηµ ·F
)
vEdA = 0,

After integration by parts and a subsequent applica-
tion of the Gauss Theorem the weak form of Maxwell’s
equations reads∫

∂Ω

vH(
ηε ·F

)
·ndΓ −

∫
Ω

(
∇

TvH) ·ηε ·FdA

(3)

+
∫

∂Ω

vE(
ηµ ·F

)
·ndΓ −

∫
Ω

(
∇

TvE) ·ηµ ·FdA = 0.

where n is the unit normal on the space-time domain
boundary Γ := ∂Ω .

2.3 The Trefftz Basis

Standard FEM uses generic polynomials as basis func-
tions. However, problem–specific basis functions, es-
pecially Trefftz-type functions [6] can provide much
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better accuracy . Here, we use vectorial basis func-
tions whose components are transport polynomials
(see Fig. 1) of the form

up,± =

uE,p,± =±
(
x± vt

)p

uH,p,± = Z
(
x± vt

)p

 , (4)

where Z =
√

µ

ε
is the intrinsic impedance and v the

speed of light in the medium. The basis function up,+

corresponds to a wave traveling leftward whereas up,−

corresponds to a wave traveling rightward; p is the or-
der of the basis function. The field vector is a linear
combination of the Trefftz waves

F =
P

∑
p=0

f p(up,++up,−), (5)

where P is the maximum order of approximation and
f p is the field coefficient of order p. Therefore the
total number of coefficients f p is 2(1+P), each cor-
responding to a vectorial basis function up.
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Fig. 1. The first four transport polynomials of order p =
0,p = 1,p = 2 and p = 3 plotted in a computational space-
time domain (x, t) ∈ [−1,1]× [−1,1]

3 Results

As a first test of the new method, we simulate a Gaus-
sian wave in a domain with an interface between two
media at x =−5. For obtaining Fig. 2 we set P = 10,
Ns = 30 and Nt = 60. The medium left of x =−5 is a
medium with µ = 1 and εr = 16. The space–time solu-
tion shows the right behavior in each medium. At the
interface a partial reflexion occurs with the right am-
plitudes of the reflected and transmitted waves. Also
the speed-of-light in the medium changes (by a factor
of four) resulting in a different trace-angles. In Fig. 3
the relative error of the vacuum simulation is plotted
against the number of the Degrees of Freedom (DoF).
We obtain exponential convergence of the relative er-
ror measured in the L 2 norm.

Fig. 2. The electric field of a 1D Gaussian wave, simulated
with the DGT-FEM. The solution in the whole space-time
domain of interest (x, t)∈ [−15,15]× [0,60] is displayed. A
medium interface is set at x =−5.
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Fig. 3. The relative error of the vacuum simulation plotted
against the number of the Degrees of Freedom.
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 Abstract---In this paper we explore 
alternative models to implement the 
nonautonomous as well as autonomous 
chaotic dynamics in mixed-mode chaotic 
circuits. The parallel LC circuit based 
MMCC model and Wien bridge oscillator 
based MMCC model are presented 
alongwith their Pspice simulations to 
verify their mixed mode chaotic behaviour. 
Virtual simulations of alternative 
implementations of mixed-mode chaotic 
circuit were found satisfactory and 
successful .  
Keywords:- Chaos, chaotic oscillator, 
mixed-mode chaotic circuit, Parallel LC 
circuit, Wien bridge circuit, secure 
communication. 

 I. INTRODUCTION 

 The first mixed-mode chaotic circuit was 
proposed by Recai Kilic et al in 2000 [1] 
which is a combination of both an 
autonomous chaotic Chua’s circuit and a 
nonautonomous chaotic MLC circuit 
developed by Murali et al in 1994 [9]. It is 
able to provide greater realiability in the 
form of a wide range of parameter 
variations and extra security keys. Since 
then various improved realisations of 
MMCC have been presented [2,3,4] 
including circuits using CFOA’s. Senani R 
and Gupta S S [8] have reported 
implementation of Chua’s chaotic circuit 
using current feedback Op amps in 1998. 
Robust Op amp realisations of Chua’s 
circuit was reported by Kenndy M P[10] in 
the year 1992. Recently MMCC circuits 
using quadrature core oscillators and 
blocks were reported by Klomkarn K and 
Sooraksa P [5,11] in the years 2010 -2011.  
Work on impulsive synchronization 
between two MMCC have also been 

reported by Recai Kilic [6, 7] in the years 
2005 and 2006. 

II. ALTERNATE REALISATIONS  
 
(a)The parallel LC autonomous model  
 

 

Figure 1 Parallel LC circuit based MMCC 
circuit 

In this model, we have replaced the series 
LC combination in the non-autonomous 
mode with a parallel LC circuit as shown 
above in figure 1. 

(b) Wien bridge oscillator based MMCC 
model 

 

Fig. 2 Wien bridge oscillator based MMC Model. 

In this model, we have replaced the 
original autonomous part with a Wien 
Bridge Oscillator based implementation. 
Theoretically a gain of 3 would be 
required to start the oscillations. In our 
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circuit, we have implemented a slightly 
higher gain, that is, a gain of 3.1. 

III CONCLUSIONS  
Virtual simulations of alternative 
implementations of the mixed-mode circuit 
were successful and satisfactory. As can be 
seen from the transient analysis of 
capacitor voltage, we see how the circuits 
jump to and fro the non-autonomous and 
the autonomous mode of operation. The 
first model clearly exhibits the 
characteristics of a parallel LC circuit 
along with the dynamics due to the 
autonomous mode. The resultant chaos 
was satisfactory. The Wien Bridge 
Oscillator based model was simulated and 
the resulting plot showed double scroll 
attractor characteristic. 
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Summary. A high order fluid model for streamer dynam-
ics is developed by closing the system after the 4th mo-
ment of the Boltzmann equation in local mean energy ap-
proximation. This is done by approximating the high order
pressure tensor in the heat flux equation through the previ-
ous moments. Mathematical characteristics of the system is
studied. Then planar ionization fronts for negative stream-
ers in N2 are simulated with the classical streamer model,
MC-PIC particle model, and with the present higher order
model.

1 High order fluid model

Streamer discharges occur in nature and as well in
many industrial applications such as the treatment of
exhaust gasses, polluted water or biogas. They appear
when non-ionized or lowly ionized matter is exposed
to high electric fields. Here we present a high order
fluid model for streamer discharges, and we use it to
simulate planar ionization fronts for negative stream-
ers in nitrogen under normal conditions; and we com-
pare the results with those of the classical fluid model.

1.1 Model description

The high order model is derived by taking the first 4
moments of the Boltzmann equation, i.e., by multi-
plying the Boltzmann equation with the kth power of
velocity (k = 0,1,2,3) and integrating over velocity
space. In principle, the set of moment equations is in-
finite, but we consider only electron density (k = 0),
momentum (k = 1), energy (k = 2) and energy flux
(k = 3). The system is truncated in the energy flux
equation (4) by approximating the high order pressure
tensor by the product of lower order moments and by
introducing factor of parametrization β . As a result
the hydrodynamical formalization of the streamer dy-
namics in 1D is described by the nonlinear system of
equations

∂tu+A(u)∂xu = F(u), (1)

where the primitive variables are

u = (n,nv,nε,nξ )T, (2)

the matrix A(u) is defined in following way

A(u) =


0 1 0 0
0 0 2

3m 0
0 0 0 1

−β
2ε2

3m 0 β
4ε

3m 0

 , (3)

and the source term is

F(u) =


nνI

nqE
m −nvνm

qEnv−n{νe
[
ε− 3

2 kT0
]
+∑

α

νeα εeα +νIεI}
5qE
3m nε−nξ νm

 .

(4)

Here n, v, ε and ξ are electron number density, av-
erage electron velocity, average electron energy and
electron energy flux, correspondingly. E is the elec-
tric field and T0 is room temperature. νm(ε) and νe(ε)
are the momentum and elastic energy transfer colli-
sion frequencies, νI(ε) is the ionization frequency and
νeα(ε) are the collision frequencies for inelastic pro-
cesses. As charge is conserved, the continuity equa-
tion for the ion density nion is

∂tnion = nνI , (5)

when the ions are approximated as immobile. Space
charge effects are taken into account through the Pois-
son equation

∂xE =
e
ε0
(nion−n) , (6)

where ε0 is the dielectric constant and e is the elemen-
tary charge.

Mathematical characteristics and numerical
solution of the system

Lemma 1. The system (1) is hyperbolic if and only if

β = 0 or β ≥ 1. (7)

In the case of β > 1, the system (1) is strictly hyper-
bolic.

Although the eigenvalues of (1) have a simple form,
the corresponding right and left eigenvectors are very
complicated, which makes it impossible to work with
them.
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The finite volume method is used to spatially dis-
cretize the system (1),(5),(6) on uniform control vol-
umes or cells Vj as follows:

Vj := [ j∆x,( j+1)∆x) , x j :=
(

j+
1
2

)
∆x, (8)

where j = 0,1, ...,M−1, ∆x = L/M is the spatial grid
size and L is the length of the simulation domain. To
approximate the spatial derivative in (1) we use the
second-order central difference discretization [1]. In
our numerical experiments we saw that this spatial
discretization approximates quite well the analytically
predicted front velocity for the minimal model [2].
The time derivatives are approximated with the Runge-
Kutta 4 method [1]. This is an explicit method, which
always has a bounded stability domain. In our case
the stability condition or CFL restriction is

β

√
2

3m
√

maxε
∆ t

2∆x
≤C, (9)

where C depends on the particular method and space
discretization. In our simulations we use the value
C = 0.1.

1.2 Particle model and classical fluid model

In essentially all numerical fluid models for stream-
ers in the past 30 years, except for [3, 4], the electron
density is approximated by a reaction drift diffusion
approximation

∂tn−∂x(µEn+D∂xn) = nνI , (10)

This model is called the minimal model; it implies a
local field approximation of reaction and transport co-
efficients.
As a second reference model we use the MC-PIC par-
ticle model from [5].

2 Results and discussion

Fig. 1 compares the results of the high order model,
the particle model and of the minimal model for the
same initial and boundary conditions and for the same
electric field ahead of the ionization front. A multi
term theory for solving the Boltzmann equation [6] is
used to calculate flux transport coefficients and mean-
energy dependent collisional rates required as an in-
put in fluid equations.

The following main conclusions can be drawn:
1) The overall front structure is the same, but the

particle model is much better approximated by the
high order model than by the minimal model.

2) That the mean electron energy ahead of the
front increases while the electric field is constant, was
also seen in Monte Carlo simulations before [2], but
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Fig. 1. Top: Electron density profile for the high order
model (dashed dotted line, blue), the particle model (solid
line, red) and for the minimal model (dashed line, green),
bottom: mean electron energy (dashed line, green) and elec-
tric field (solid line, blue) profiles in the high order model,
mean electron energy in the particle method (solid line, red).
The plots show the simulation for instant 0.7 ns for identical
initial conditions. The electric field ahead of the ionization
front is 145 kV/cm at standard temperature and pressure,
which corresponds to 590 Td.

not yet included in fluid models. The mean electron
energy behind the front where the electric field van-
ishes, is close to 1 eV, because energy relaxation is
slow in this region. This feature was not included in
fluid models before.

In summary, the new high order fluid model cap-
tures effects in streamer simulations that up to now
were only inherent in the more microscopic Monte
Carlo simulations. This is a step forward for long time
calculations.
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Summary. A nanoscale double-gate MOSFET is simu-
lated by using a model based on the maximum entropy prin-
ciple (MEP) by including the surface scattering roughness.
The influence of this latter on the electrical performace of
the device is discussed.

1 Mathematical model and simulations

The main aim of the paper is to simulate the nanoscale
silicon double gate MOSFET (hereafter DG-MOSFET)
shown in Fig. 1. The length of the diode isLx= 40 nm,
the width of the silicon layer isLz = 8 nm and the ox-
ide thickness istox = 1 nm. Then+ regions are 10 nm
long. The doping in then+ regions isND(x) = N+

D =
1020 cm−3 and in then region isND(x) = N−

D = 1015

cm−3, with a regularization at the two junctions by a
hyperbolic tangent profile.

Due to the symmetries and dimensions of the de-
vice, the transport is, within a good approximation,
one dimensional and along the longitudinal direction
with respect the two oxide layers, while the electrons
are quantized in the transversal direction. Six equiv-
alent valleys are considered with a single effective
massm∗ = 0.32me, me being the free electron mass.

Since the longitudinal length is of the order of a
few tents of nanometer, the electrons as waves achieve
equilibrium along the confining direction in a time
which is much shorter than the typical transport time.
Therefore we adopt a quasi-static description along
the confining direction by a coupled Schrödinger-
Poisson system which leads to a subband decomposi-
tion, while the transport along the longitudinal direc-
tion is described by a semiclassical Boltzmann equa-
tion for each subband.

Numerical integration of the Boltzmann-Schrödinger-
Poisson system is very expensive, from a computa-
tional point of view, for computer aided design (CAD)
purposes (see references quoted in [1, 2]) In [1] we
have formulated an energy transport model for the
charge transport in the subbands by including the non
parabolicity effect through the Kane dispersion re-
lation. The model has been obtained, under a suit-
able diffusion scaling, from the Boltzmann equations
by using the moment method and closing the mo-

ment equations with the Maximum Entropy Princi-
ple (MEP). Scatterings of electrons with acoustic and
non polar optical phonons are taken into account. The
parabolic subband case has been treated and simu-
lated in [2].

The main aim of the present paper is to include
also the surface roughness scattering in which elec-
trons scatter off the boundaries of the confining poten-
tial. The rate of this scattering is higher when the gate
voltage increases and the width of the silicon layer
is below ten nm and therefore comparable with the
fluctuations in the oxide thickness. We want to assess
the relevance of this scattering on the electric per-
formance of the device after proposing an appropri-
ate numerical scheme for the MEP energy transport-
Schr̈odinger-Poisson system. In the Figures we report
the results obtained by including the nonparabolic-
ity effects but without surface roughness scattering.
These preliminary simulations are rather encouraging
and we are currently working upon the inclusion of
the scattering at the surface.

Acknowledgement. V.D.C. and V. R. acknowledge the fi-
nancial support by the P.R.I.N. project 2010 Kinetic and
macroscopic models for particle transport in gases and semi-
conductors: analytical and computational aspects and by
P.R.A. University of Catania. G. M. acknowledges the fi-
nancial support by P.R.A., University of Calabria.

Fig. 1. Simulated DG-MOSFET
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andboth gate voltages equal to -3 V
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On the autocorrelation of environment induced noise
B.L. Michielsen

Onera, Toulouse, France Bastiaan.Michielsen@Onera.fr

Summary. A fundamental relation between energy loss
in electromagnetic engineering models leads to the defini-
tion of canonical stochastic fields. This canonical stochastic
electromagnetic field model, which has been established in
previous work (see [2–4]), is here used to construct stochas-
tic processes weakly equivalent to the induced processes ac-
cording to the canonical field model. Such processes can be
used to test electronic systems, in particular communication
links which are sensitive to specific correlation distances in
induced noise.

1 Introduction

Because the environment in which an electronic sys-
tem has to operate is not deterministically known,
stochastic fields play an important role in electronic
system testing. In this contribution, we elaborate on
a fundamental relation between “energy loss” and
stochastics generalising the well-known concept of
noise temperature in electronics. The fundamental ob-
servation is that if a system’s model shows loss of
electromagnetic energy into some environment, it is
implied that this environment works as a stochastic
source of electromagnetic energy on the system in
question.

We shall first recall the definition of a canonical
stochastic electromagnetic field having a good space-
time covariance operator. Having available this “a pri-
ori” model for the stochastic fields in the environment
we can try to compute directly those characteristics
of the signals which are decisive for our purpose. An
example of this is the auto-covariance function of in-
duced noise sources, which gives essential informa-
tion on the internal structure this noise. In this con-
tribution, we show a rather simple way to compute
this auto-covariance function for a large class of prob-
lems. We also show how to generate noise realisa-
tions, functions of time, and compute the appropri-
ate statistics from simulation results. This may be a
practical strategy for essentially non-linear problems
or when a direct method is not known.

2 Basic field theory

The energy emission operator of time-domain electro-
magnetic field theory is given by C(J) = E(J)−E(J)
(X is the time reversal of X). This is the electric field

propagator anti-symmetrised with respect to time re-
versal, i.e., C(J) =−C(J). The following integral re-
lation justifies the name.∫

D×{t1}
(µ0Ha ·Hb +ε0Ea ·Eb)=−

∫
D×(t0,t1)

C(Jb)·Ja

(1)
Here (t0, t1) is a time interval and the current distri-
butions Ja and Jb have their spatial support in D and
vanish outside the given time interval.

It has been shown in [4] that this energy emis-
sion operator is also the covariance operator, CE , of
a stochastic field defined by a probability measure on
the space of initial values, S ′(R3×{t0}), (S ′, here,
denotes the vector-valued tempered distributions), i.e.,
by a stochastic distribution ψ0 = (e0,h0), such that

∀ f ,g ∈S E(〈ψ0, f 〉〈ψ0,g〉) = σ
2〈 f ,g〉H

where S is Schwartz’ space of infinitely smooth test
fields, H is the direct sum Hilbert space with the in-
ner product given by the LHS of (1) and S ⊂H ⊂
S ′ are dense inclusions (see [1]). We obtain for any
two distributions Ja and Jb ,∫

D×(t0,t1)
CE0(J

a) · Jb = σ
2
∫

D×(t0,t1)
C(Ja) · Jb (2)

where E0 is the electric field corresponding to the
stochastic distribution ψ0 on D×{t0} and σ2 a vari-
ance parameter of this stochastic initial value distri-
bution.

3 Observables on stochastic fields

We now concentrate on Thévenin sources represent-
ing the action of electromagnetic fields, in some envi-
ronment, on an electronic system placed in it. Thévenin
sources are “observables” defined through distribu-
tions on electromagnetic fields. For example, V =
〈JP,E〉 =

∫
P E, where P is a curve defining an elec-

tronic port and E is the total electric field in the port
region. If the electric field is a stochastic field, the
given formula defines the Thévenin source as a gen-
eralised stochastic process.

An important characteristic is the auto-covariance
of the Thévenin sources as function of time. Suppos-
ing that the average field is zero, we get,

E(V (t1)V (t2)) = E(〈JP,t1 ,E〉〈JP;t2 ,E〉)
= 〈JP,t1 ,CE(JP,t2)〉 (3)
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where CE is the covariance operator of the stochas-
tic field E. Thévenin sources have alternative integral
representations in terms of a time reversed current
distribution, j(t), on the conductors of the electronic
system and only the incident part of the total electric
field. The current distribution, j(t), appearing in such
a representation is the one appearing by applying a
Dirac current source to the electronic port considered.
This current distribution corresponds to the scatter-
ing of an elementary dipole field by the conductors of
the system. The electric field, e = CE( j), appearing
in (3), is the opposite of the trace of the elementary
dipole field on the conductors. This simplifies (3) to
E(V (t1)V (t2)) = 〈 j(t1),e(t2)〉, which is more easily
computed than the general expression.

4 Statistically equivalent stochastic
processes and the radiation resistance

The analysis presented thus-far, allows for estimating
a priori covariances of interference sources to be ap-
plied to system models accounting for uncertain en-
vironments in a way consistent with the mechanisms
of electromagnetic energy loss to this environment.
In order to actually test a system by simulations us-
ing the stochastic environment model, we may want
to generate time functions for the noise sources and
compute statistics on the essential properties of the
system. The question arises, then, whether the gen-
erated time functions are representative for those one
will obtain in the actual situation. However, such a
question has no answer, the only thing we can find
out is whether a set of generated time functions is
statistically equivalent to the actual processes we try
to model. That means if we create sufficiently many
functions with our algorithm, we want that the statis-
tics we are interested in converge to the statistics we
would obtain in the situation we model. In our case,
we want the sample functions we generate to have an
autocorrelation function with a good convergence to
the autocorrelation function obtained in the actual sit-
uation.

We will obtain the desired result in two steps. The
first step is to show how we can compute the spec-
tral representation of the autocovariance function of
an observable on a canonical stochastic field. The sec-
ond step is to apply a standard Fourier integral repre-
sentation trick to generate a stochastic process which
has this auto covariance function.

The autocovariance of the observable Thévenin
source V is given by

CV (s, t) = E[
∫

ω∈R
Vω(s)

∫
ν∈R

Vν(t)]

=
∫

ω,ν∈R2
〈 jω(s),CE jν(t)〉

=
∫

ω,ν∈R2
〈 ĵω exp( jωs),CE ĵν exp( jωt)〉

where ĵω is the spectral component of the current dis-
tribution defining the observable.

Using the stationarity of the processes, i.e. invari-
ance under time translations, we can reduce the dou-
ble integral over the frequencies to a single one and
we get

∀t ∈ R CV (t, t + τ) =
∫

ω∈R
〈 jω ,E( jω)〉exp( jωτ)

=
∫

ω∈R
R j(ω)exp( jωτ)

and R j(ω) is the frequency domain radiation resis-
tance of the current distribution jω .

For the second step, we use a well-known relation

E[ f (t) f (s)] =
∫

ω∈R
var( f̂ (ω))exp( jω(s− t)

valid for spectral amplitudes f̂ (ω) and f̂ (ν) statisti-
cally independent if ν 6=±ω , and, in addition satisfy-
ing E[Re( f̂ (ω))Im( f̂ (ω))] = 0 and E[Re( f̂ (ω))2] =
E[Im( f̂ (ω))2]. This result implies that a stochastic
process which has spectral amplitudes satsifying the
said constraints and have a variance equal to the fre-
quency domain radiation resistance has the correct au-
tocovariance function.

5 Conclusion

We obtain explicitly computable time functions which
are realisations of a stochastic process statistically
equivalent (with respect to the autocorrelation func-
tion) to an observable on a canonical stochastic field.
This process includes the geometrical properties of
the system, by means of the traversal times and the
evaluation of the defining current distributions on the
material configuration, but it also accounts for reso-
nances in the configuration and between the configu-
ration and the environment through the environment’s
Green function which defines the space-time covari-
ance operator of the canonical stochastic field.
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Summary Spiral inductors are very often used in 
integrated circuits for many applications. To design 
spiral inductors or to improve the spiral inductors 
performances is absolutely necessary to calculate theirs 
inductances and/or to optimize theirs layouts. In this 
effect we create a software program, named CIBSOC 
(Spiral Inductors Inductance Calculation and Layout 
Optimization). The program is dedicated to calculate 
dc inductances and to optimize layouts for spiral 
inductors. We use a wide range of inductors in the 
applications made with our program. We compare the 
results of our applications with the measurements 
results existing in the literature and also with the 
results that we have obtained using a commercial field 
solver in order to validate our program. Our program is 
accurate enough, has a very friendly interface, is very 
easy to use and it calculates the problems in a very sort 
running time compared with other similar programs. 
Since spiral inductors tolerance is generally on the 
order of several percent, a more accurate program is 
not needed in practice. The program is very useful for 
the spiral inductors design, because it calculates the 
inductance of spiral inductors with a very good 
accuracy. It is also useful for the spiral inductors 
optimization, because it affords optimal solutions for 
spiral inductor layouts in terms of the technological 
limitations and/or of the users’ needs. 
 
 
1. Introduction 
 
The passive components parameters extraction 
from radio frequency integrated circuits such as 
inductance, capacitance and resistance extraction 
are research topics of great interest and also very 
provocative. This fact is motivate by the 
continual technological progress thanks to it is 
now possible to implement integrated circuit at 
microns dimensions. The minimization of the 
integrated circuit dimensions at this extreme level 
lead in an implicit way to the significant rise of 
parameters extraction importance. These 
parameters must be calculated with a very good 
accuracy. We focus on inductance calculation. 
The inductance value extraction was and is 
intense studied in the literature. At this moment 
exists many expressions and methods used for 
integrated circuits inductance extraction [1]-[5], 

but as is mentioned in the literature, there are 
limits in their application. 
 
 
2. CIBSOC Software Program 
 
To design and to optimize the spiral inductors 
from integrated circuits is first necessary to find 
the exact parameters values, such as inductance 
value. So the fast and accurate inductance 
extractions become more and more important for 
design, optimization and design verification of 
the spiral inductors and for their performances 
improvement. The exact inductance calculation 
for spiral inductors; the spiral inductors 
optimization by finding their optimal layout for a 
given maximal inductance or for any given 
inductance value keeping a constant area for the 
inductor implementation in the integrated circuits 
are still needed to improve the spiral inductors 
performances. To this aim we implement a 
software program that allow fast and accurate 
inductance calculation and spiral inductor layout 
optimization. The program is composed of four 
modules. The first and the second one are create 
to calculate the spiral inductor inductance. The 
third and the fourth one are created to optimize 
the spiral inductor layout. 
 
 
3. Applications in CIBSCO Program 
 
We create a set of spiral inductors and we 
implement them in our program to find theirs 
inductances and to optimize theirs layouts. We 
present in this paper only the spiral inductors 
with square shape, even if the program allows 
also the calculation for hexagonal, octagonal and 
circular shapes of spiral inductors. We use 
CIBSOC program to calculate the total 
inductance for each of the square spiral inductor 
that we create and to optimize theirs layouts. All 
the dimensions used in the paper are in [μm] and 
the inductance values in [nH]. 
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4. Comparison with Measurements 
 
We calculate the inductance for some square 
spiral inductors that exist in the literature with 
measurements results (Table I) and we compare 
these results with the results obtained with our 
program. We demonstrate the accuracy of our 
CIBSOC program results. 

Table I 
Comparison of our results with measurements results 
N 

(turn) 
Ref.. de 

(μm) 
w 

(μm) 
s 

(μm) 
t 

(μm) 
Lm 

(nH) 
LCIBSOC 
(nH) 

εr 
(%) 

2.75 [6] 279 18,3 1,9 0,9 3,1 3,009 2,93 
7.50 [6] 166 3,2 1,9 0,9 12,4 11,987 3,33 
9.50 [6] 153 1,8 1,9 0,9 18,2 17,842 1,96 
2.75 [6] 277 18,3 0,8 0,9 3,1 3,055 1,45 
5,00 [6] 171 5,4 1,9 0,9 6,10 5,859 3,95 
3.75 [6] 321 16,5 1,9 0,9 6,1 6,026 1,21 
3.00 [7] 300 19 4 0,9 3,3 3,4977 5,99 
5.00 [7] 300 24 4 0,9 3,5 3,7736 7,81 
9.00 [7] 230 6,5 5,5 0,9 9,7 9,6791 0,21 
8.00 [8] 226 6 6 0,9 9,00 9,143 1,58 
16.00 [8] 300 5 4 0,9 34 36,544 7,48 
6.00 [7] 300 9 4 0,9 11,7 12,444 6,36 

 
 
5. Comparison with Commercial Field 
Solver 
 
To validate our CIBSOC program we consider a 
very good opportunity to use a demo version of a 
commercial field solver dedicate to the 
parameters extraction from different types of 
complex integrated circuits. We implement in this 
program a wide range of square spiral inductors 
starting with the one that we create. The results of 
inductance variation in terms of the number of 
turns are presented in Table II. 

Table II 
Comparison of Results. Inductance vs. number of turns. 

Number of turns LCIBSOC (nH) L commercial program (nH) 
1 1,808 1,7309 
2 5,582 5,4228 
3 10,527 10,285 
4 16,15 15,833 
6 28,081 27,637 
8 39,347 38,794 

12 55,315 54,704 
16 60,064 59,646 

The inductance variation in terms of the number 
of turns is plotted in Fig. 1. We observe close 
agreement between the results. With dotted line 

are plot the results obtained with our CIBSOC 
program, and with continuous line the results 
obtained with the commercial program. 
 
 
6. Conclusions 
 
The main aim of this paper was to present the 
inductance calculation and layout optimization 
for spiral inductors CIBSOC software program 
implemented by the authors. The program 
validation was done by comparison of the results 
obtained with our CIBSOC program, with the 
measurements results taken form literature and 
respectively with the results obtained by 
modeling the square spiral inductors also with a 
commercial field solver create especially for 
parameters extraction. Analyzing the results 
obtain on these three different ways we ascertain 
the results similitude, the small errors that prove 
the accuracy of our program. We consider our 
program very useful for design and for 
optimization of spiral inductors. It is easy to use 
and the running times are small compared with 
other similar programs. We want to extent our 
program also for ac parameters calculation, at 
high frequency. 
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Summary 

 

Sundarapandian and Pehlivan discovered a novel 

chaotic attractor. Basic dynamical properties of 

the new attractor system were analyzed by means 

of equilibrium points, eigenvalue structures, 

Lyapunov exponents and parameters regions [1]. 

This paper introduces the electronic circuit 

modelling, simulation and realization of the 

newly discovered chaotic attractor. Our 

investigation was completed using a combination 

of theoretical analysis, simulations and real 

experimental implementation. To implement as 

electronics of this new chaotic system is very 

easy due to having zero initial conditions. 

 
 

1 Introduction 
 

The Lorenz system displays very complex 

dynamical behaviour, especially the well-known 

two-scroll butterfly-shaped chaotic attractor [2]. 

Chen constructed another chaotic system [3], 

which is, nevertheless, not topologically 

equivalent to the Lorenz’s system [3]-[4]. The 

Chen’s system is dual to the Lorenz system and 

similarly has a simple structure [4]. Lü and Chen 

found the critical chaotic system [5], which 

represents the transition between the Lorenz and 

Chen attractors. Recently, Yang et al. [6] and 

Pehlivan et al. [7] introduced and analyzed the 

new 3D chaotic systems with six terms including 

only two quadratic terms in a form very similar to 

the Lorenz, Chen, Lü and Yang-Chen systems, 

but they have two very different fixed points: two 

stable node-foci.  

 

There has been increasing interest in exploiting 

chaotic dynamics in engineering applications, 

where some attention has been focused on 

effectively creating chaos via simple physical 

systems, such as electronic circuits [8-12].  

 

Motivated by such previous work 

Sundarapandian and Pehlivan discovered a novel 

chaotic attractor [1]. 

 

In this paper, Section I introduces the 

Sundarapandian chaotic system. Section 2 

presents the electronic circuit modelling and 

OrCad-PSpice® simulation results. The real 

circuit implementation oscilloscope outputs are 

given in Section 3. Finally, conclusions and 

discussions are given. 

 

2 Circuit Modelling of the Chaotic 

System 

 
The simple electronic circuit is modelled that can 

be used to study chaotic phenomena. The circuit 

employs simple electronic elements such as 

resistors, and operational amplifiers, and is easy 

to construct. 

 

Figure 1 and 2 show Orcad-PSpice simulation 

result and circuit schematic of the 1new chaotic 

circuit. In this simulation, parameters and initial 

conditions are taken as 5.1a , 4.0b , 4.0c , 

0)0(1 x , 0)0(2 x , 1.0)0(3 x respectively. 

 

           V(X)

-5.0V 0V 5.0V
V(Z)

-5.0V

0V

5.0V

 
Fig. 1. Pspice Simulation Result of the New Chaotic 

Circuit (xz-attractor) 
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Fig. 2. Circuit Schematic of the New Chaotic Attractor 

 

3 Electronic Circuit Design and 

Implementation of The New Attractor 

 

Figure 3 shows oscilloscope outputs of the real 

circuit implementation. 

 

 

Fig. 3. Oscilloscope output of the real circuit 

implementation (xz-attractor) 
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Summary. One-dimensional multilayer reflection gratings
with different groove shapes are considered and optimized
for maximum diffraction efficiency in the first order in Lit-
trow conditions. A rigorous formulation for the design op-
timization problem based on merit function minimization
is presented. Nelder-Mead (simplex) method is applied for
minimizing the merit function. At each step the direct prob-
lem is solved by means of a combination of the incomplete
Galerkin’s method and matrix techniques.

1 Introduction

Due to its selective special properties and capabil-
ity of spacial decomposition of waves with different
frequencies as well as spacial redistribution of the
wave energy, diffraction gratings are extensively ap-
plied in modern optical devices, especially in laser
systems [1]. Diffraction gratings are widely applied in
semiconductor diode lasers for wavelength stabiliza-
tion as mirrors in external resonators [2] as well as
for laser tuning [3]. Another application of diffraction
gratings in laser physics is connected with pulse com-
pression in ultrashort high-power lasers that are based
on chirped pulse amplifications [4]. In all cases it is
crucial to use gratings which are capable of reflect-
ing the incident light at a desired frequency (or wave-
length) into one diffraction order with an efficiency as
close to 100% as possible and special grating configu-
rations are used, such as Littrow configuration (i.e. the
geometry in which the light of a specific wavelength
diffracted from a grating into a given diffraction or-
der travels back along the direction of the incident
light [1]). In such systems the gratings are tradition-
ally covered with metallic films, or purely metallic
gratings are implemented. Being fragile the gratings
can be easily damaged, especially by high-intensity
laser pulses [5]. To minimize the damage and to en-
sure reflection into one diffraction order it is desirable
to implement entirely dielectric diffraction gratings
[6, 7]. This gives rise to a specific problem of grating
design and optimization. This problem, with respect
to the applications described above has been widely
discussed in the literature. However in many cases no
optimization problem is solved but only some heuris-
tic considerations are presented. Only several papers
(for example [6]) contain rigorous formulation of the
design problem in terms of a merit function which is

minimized for obtaining the optimized structure. Thus
it is very important to provide a rigorous formula-
tion for the grating design problem and apply rigorous
non-heuristic methods for obtaining the solution.

2 Problem statement

Within this paper we consider entirely dielectric one-
dimensional multilayer reflection gratings with differ-
ent groove shapes such as binary (Fig.1) and trian-
gular (Fig.2) gratings. As the dielectric grating itself
provides only good redistribution of incident wave en-
ergy between several diffraction orders, a multilayer
dielectric mirror should be used for ensuring good re-
flectance (schematically presented as green and light
green layers in Figs.1,2). The grating is placed on
the top of the multilayer dielectric mirror deposited
on a substrate (represented as a light brown area in
Figs.1,2). The wave is considered to be incident (di-
rection < i >) at a grating at some given angle θ . Our
goal is to optimize the grating parameters via maxi-
mizing the diffraction into the first order for a given
wavelength in case of first order Littrow conditions,
i.e for the case when the < i > and < 1 > directions
in Figs.1,2 are coincident.

Fig. 1. Binary multilayer grating

3 Optimization algorithm

In each case (binary and triangular gratings) the mul-
tilayer grating structure is parametrized. A binary grat-
ing is determined by its period, groove depth and
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Fig. 2. Multilayer grating with triangular grooves

groove width, a triangular grating is determined by
its period and blaze angle. There can be some restric-
tions on these parameters, apart from trivial physical
ones (non-negative values of the parameters), result-
ing from the following requirements:

• only two diffraction orders (0, 1) should be prop-
agating in both the incident medium and the sub-
strate, all higher orders being evanescent;

• there should be no waveguide modes in the multi-
layer stack at a a given wavelength and at a given
angle of incidence [6].

We provide a grating optimization algorithm based on
a merit function minimization (or maximization) in
terms of the variable grating parameters given above
under the described constraints. The merit function
represents the first order diffraction efficiency and
should be maximized. Another formulation is also
used, such as minimizing of the zero-order diffrac-
tion efficiency in case of only two propagating orders
(0, 1). The multilayer mirror parameters are optimized
independently, providing almost 100% reflectance for
a given wavelength and for a given angle of incidence
and as a starting point a quarter-wave stack is taken.
The merit function minimization algorithm is based
on the Nelder-Mead (simplex) optimization [8]. At
each step the merit function is evaluated by obtaining
the solution of a full-vectorial diffraction problem for
Maxwell equations, which is obtained by means of
a combination of the incomplete Galerkin’s method
[9, 10] and matrix techniques such as transfer ma-
trix and scattering matrix methods [11]. These meth-
ods provide efficient solution of the problem of wave
diffraction on a multilayer grating.

Within this paper we provide multilayer diffrac-
tion grating optimization for maximizing first-order
reflection in Littrow conditions. Different polariza-
tion states (TE and TM polarizations) are considered.
The results for gratings with different groove shapes,
such as binary and triangular gratings, are obtained
and compared with each other.
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Summary. In this communication, we present a computa-
tional model for heterojunction Organic Solar Cells (OSCs)
consisting of a system of semilinear PDEs and ODEs. The
mathematical model is discussed, focusing on the transmis-
sion conditions at material interfaces, together with the nu-
merical method used for its solution. Steady-state and tran-
sient simulations are performed on realistic devices with
various interface morphologies.

1 Introduction and Motivation

In the design of efficient OSCs the impact of mate-
rial interface morphology on performance is currently
considered to be of paramount importance. For this
reason, material scientists are putting much of their
research effort into techniques for controlling inter-
faces down to the nanoscale, for example by studying
materials that have the ability to self-assemble into
ordered nanostructures during the deposition process.
For the same reason, computational models that allow
to estimate device performance carefully accounting
for the material interface geometry and the phenom-
ena occurring on it are in high demand. Previous ap-
proaches in this direction can be found in [1] (for
biplanar devices) and [7]. In this communication we
present our work aimed at extending the model of [1]
to treat arbitrary multidimensional morphologies.

2 Mathematical Model

Let Ω be an open subset of Rd , d = 1,2,3, represent-
ing the geometrical model of an OSC and ννν be the
unit outward normal vector over the boundary ∂Ω .
The device structure is divided into two open disjoint
subregions, Ωn (acceptor) and Ωp (donor), separated
by a regular surface Γ on which νννΓ is the unit nor-
mal vector oriented from Ωp into Ωn. The cell elec-
trodes, cathode and anode, are denoted as ΓC and ΓA,
respectively (see Fig. 1 for the 2D case). Let e, n and p
denote the volumetric densities of excitons, electrons
and holes in the cell, respectively, P be the areal den-
sity of polaron pairs and ϕ be the electric potential.
For any function f : Ω → R, let [[ f ]] := fn− fp, fn
and fp being the traces of f on Γ from Ωn and Ωp,

Ωn

Ωp

Γ

ΓA

ΓC

Γn Γn

Γp Γp

ννν

ννν

νννΓ

xxx

Fig. 1. OSC cell geometry.

respectively. Excitation phenomena occurring in the
bulk are described by the parabolic problem:

∂e
∂ t
−∇ · (De∇e) = Q− e

τe
in Ω \Γ ,

[[e]] = 0, on Γ ,

[[−νννΓ ·De∇e]] = ηkrecP− 2H
τdiss

e on Γ ,

e = 0 on ΓC ∪ΓA,

e(xxx,0) = 0, ∀xxx ∈Ω .

(1a)

Dissociation/recombination of excitons, electrons and
holes into polaron pairs at the material interface is de-
scribed by the ODE:

∂P
∂ t

=
2H
τdiss

e+2Hγnp− (kdiss + krec)P on Γ ,

P(xxx,0) = 0, ∀xxx ∈ Γ .

(1b)

Transport of photogenerated electrons in the acceptor
domain Ωn is described by the parabolic problem:

∂n
∂ t

+∇ ·Jn = 0 in Ωn,

Jn =−Dn∇n+µnn∇ϕ in Ωn,

−νννΓ ·Jn =−kdissP+2Hγnp on Γ ,

−κnννν ·Jn +αnn = βn on ΓC,

n(xxx,0) = 0, ∀xxx ∈Ω .

(1c)

A parabolic problem completely similar to (1c) de-
scribes hole transport in the donor domain Ωp. The
dependence of the electric potential and field on the
space charge density in the cell is described by the
Poisson equation:
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∇ · (−ε∇ϕ) =−qn in Ωn,

∇ · (−ε∇ϕ) = +q p in Ωp,

[[ϕ]] = [[−νννΓ · ε∇ϕ]] = 0 on Γ ,

ϕ = 0 on ΓC,

ϕ =Vappl +Vbi on ΓA.

(1d)

A list of the model parameters with their correspond-
ing physical meaning is reported in Table 1. The
PDE/ODE model (1) has been introduced in [2] and
represents a multi-dimensional generalization of the
1D formulation proposed in [1]. System (1) is com-
pleted by periodic boundary conditions on Γn∪Γp. We
notice that the dissociation and recombination pro-
cesses occurring at the donor-acceptor interface Γ

are dealt with by the nonlinear transmission condi-
tions (1a)3 and (1c)2, whose dependence on the local
electric field magnitude and orientation is contained
in the polaron dissociation rate constant kdiss [2].

Table 1. Model parameters.
Symbol Parameter
µi, Di Mobility and diffusivity of species i, i = e,n, p
Q Exciton generation rate
τe, τdiss Exciton decay and dissociation times
krec, kdiss Polaron recombination and dissociation rates
γ Electron-hole recombination rate constant
η Singlet exciton fraction
H Active layer thickness

3 Algorithms and Simulation Results

System linearization (by a quasi-Newton method) and
approximation are carried out by adapting the ap-
proach used in [3]. Time advancing is treated using
Rothe’s method and adaptive BDF formulas, while
the exponentially fitted Galerkin finite element me-
thod studied in [5] is used for spatial discretization.
The interface conditions at the donor-acceptor inter-
face are taken care of by means of the substructuring
techniques described in [6].
Model (1) is here validated in both stationary and
transient regimes. In a first set of simulations, we
study the finger-shaped heterostructure considered in
[7]. Fig. 2 shows the output current-voltage charac-
teristics predicted by our model, which is in excellent
agreement with that computed in [7]. In a second set
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Fig. 2. Current-voltage characteristics for the finger-shaped
heterostructure investigated in [7].

Fig. 3. Free carrier densities for a device with complex mor-
phology.
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Fig. 4. Contact current density transient at two different
voltage regimes.

of simulations, we test the ability of the model to de-
scribe the behaviour of a cell characterized by a com-
plex interface morphology. Fig. 3 shows the free car-
rier densities computed for a “curly-shaped” geome-
try at short circuit working conditions. In a third set of
simulations, we test the model in the time-dependent
case. Fig. 4 shows the cell current response under two
different biasing conditions for a planar device geom-
etry similar to that studied in [1]. Ongoing activity is
devoted to the investigation of the working principles
of the light-harvesting device described in [4].
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Summary Improving the characteristics of a filter 
presupposes two major directions of action: the first 
direction refers to the increase of attenuation (by 
means of the increase of losses) in high frequency, 
while the second direction refers to the suppression of 
the parasitic effects in the constitutive devices. Thus, in 
this light, the paper presents the authors’ contribution 
to the two major directions of actions mentioned 
above; in the first part, techniques of loss increase are 
presented, while in the second part techniques of 
minimizing the parallel equivalent capacity are shown, 
techniques proposed by the authors. In part three of the 
paper these techniques are applied simultaneously to an 
EMI filter made by use of plenary magnetic technology 
in order to study its performance through 2D and 3D 
numerical modelling. The final conclusions will close 
the present paper. 
 
 
1 Introduction 
 
The main technological challenge for the 
integrated EMI filters, as it appears from the 
speciality literature, is that of improving its 
performance for high frequencies by reducing the 
equivalent parallel capacity (EPC) and the 
equivalent series inductance (ESL) of the 
integrated capacitor coils, by the increase of 
losses at high frequency, respectively [1], [2]. 
The fundamental element of any integrated 
magnetic planar device is represented by its LC 
integrated structure.  For the construction of the 
EMI filters, an LC integrated structure with three 
coils per layer has been chosen, an attractive 
structure which is also often mentioned in the 
literature for the manufacturing of different 
plenary integrated magnetic devices; it is 
presented in Fig. 1. 
 
 
2 Techniques for improving the 
performance of the integrated EMI 
filters  
 
In order to achieve the integrated EMI filters big 

losses at high frequency are desired, that is small 
losses at low frequencies, respectively. Aiming at 
that, the authors propose the technique of nickel 
coating conductors, a technique to be described 
in detail in the final work.  
 

 
Fig. 1. Explanatory_ LC integrated structure with 3 coils –3D 

detailed image. 
 
As far as the parallel equivalent capacity is 
concerned, since great geometrical complexity 
structures are involved, it cannot be defined by 
means of direct calculus relationships nor can it 
be localized in a certain device, since it is 
practically distributed within the space between 
the coil windings constituting the filter. A new 
technique for reducing the parallel equivalent 
capacity is proposed within the paper, that is 
applying a geometrical staggering among the coil 
windings. The structure of the optimum placing 
of the staggered coiling constitutes the subject of 
a study for optimal planning with specific 
numeric optimization algorithms created by the 
authors. These techniques of increasing loss at 
high frequency and of minimizing the EPC 
respectively are applied in the case of EMI 
integrated filters in order to improve their 
performance.  
The equivalent principle scheme for an EMI filter 
achieved by means of planary magnetic 
technology is given in Fig. 2 [3]. 
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Fig. 2. The equivalent principle scheme for an EMI filter [3] 

 
In order to highlight the performance introduced 
by means of applying the techniques proposed by 
the authors, a comparative study has been carried 
out, having as a starting point an initial structure 
achieved in the classical variant, the so called 
"original structure" and an "optimized structure" 
in the afore mentioned sense, respectively. The 
two structures are presented in Fig. 3, the 
constituting elements being mentioned alongside 
their functional role within the EMI filter. 
 

 
a) The original structure 

 

 
b) The optimized nickel coated structure 

Fig. 3. Explanatory_ 3D EMI Filters – unfolded 
representations. 

 
Comparing the capacity matrixes obtained 
following the numeric modeling of the two 
proposed filters, it can be noticed that the 
parasitic capacity corresponding to the CM1 coil 
decreases from 219.4 pF, the value obtained in 
the matrix corresponding to the EMI filter based 
on the original structure, to 102.32 pF in the case 
of the EMI filter based on the coiling structure 
optimally staggered, the parasitic capacity 
corresponding to the CM2 coil decreases from 
219.16 pF to 101.61 pF respectively.  
The impedance variation with frequency at the 
inlet of the closed filter for a 50 Ω charge in the 
case of the two proposed structures is shown in 
Fig. 4. 

 
a) entrance impedance 

 

 
b) transfer function 

Fig. 4. The results of the comparative analysis of the variation 
with the frequency in case of EMI filters: SO – the original 

structure; BD – nickel plated, staggered coiling. 
 
 
3 Conclusions 
 
Following the analysis of the results obtained 
which have been detailed in the present paper, it 
can be stated that the techniques proposed by the 
authors for the improvement of the EMI filter 
performance prove to be efficient. Thus, the EMI 
filters which have applied these techniques have a 
parallel equivalent capacity reduced to 
approximately 47% of the initial value while the 
HF losses are increased with approximately 32% 
with respect to the initial value respectively.  
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Summary. This paper studies how distortion contribu-
tion analysis is affected by the internal structure of the
device models. It is shown that to keep the distortion con-
tributions tractable and physically meaningful we need to
lump the contributions so that they resemble the contri-
butions of a classical transistor pi-model. The technical
challenges related to this are also discussed.

1 Introduction
Until now, distortion contributions have been

analyzed mostly fully analytically, using symbolic
Volterra analysis and simplified schematics[1,2].
The authors have proposed a fully numerical dis-
tortion contribution analysis method called Volter-
ra-on-Harmonic-Balance (VoHB) [3,4], that both
builds the polynomial models needed for Volterra
analysis, and propagates the distortion contribu-
tions to any chosen node. VoHB proceeds in the
following steps: HB is run to obtain voltage and
current spectra in all nodes and branches. Using
these, a polynomial model is built for each non-lin-
ear VCCS and VCQS. Then, a linearized network
is built (using the linear terms of the fitted polyno-
mials), and - using the direct current method - the
response of the injected distortion currents is calcu-
lated in a given node.

VoHB operates at VCCS level and does not
need modifications into the device models. Howev-
er, the output contains the response of all non-lin-
ear VCCS and VCQS found inside the device
model, so that in addition to the dominant sources
it includes reverse biased pn junctions, or parasitic
devices of BJTs, for example. Many of these insig-
nificant terms can be masked away simply based on
their low magnitude, but another problem has
emerged.

Many new device models are distributed as an
executable Verilog-A code, which is automatically
converted into a model structure. The syntax of
verilog-A makes it possible to write models whose
structure differs notably from traditional device
models and is not necessarily optimal for Spice-
like simulators, or distortion contribution analysis
in particular. For example, Fig. 1 shows a rather
typical example where the transistor’s Ids source is
split into two by generating an intermediate node in
the middle of the source. From terminal current

point of view this modification is absolutely ok, but
it scrambles the distortion contribution analysis.
VoHB calculates the contributions of all the sourc-
es, and adding an equivalent (and equal) distortion
current sources parallel to Ids and Idsx as in Fig 2a
generates two large distortion contributions that
cancel each other. The net current sum for example
in the collector terminal is still correct, but the
physical meaning and intuition is lost: the names of
the sources do not mean anything to the engineer,
any more, and the mutually cancelling contribu-
tions have no physical meaning.

For the above reasons, there is a clear interest to
reduce the entire internal structure of a complex de-
vice model (Fig. 2a) into something resembling a
classic transistor pi-model (Fig. 1a) to keep the dis-
tortion contribution analysis results tractable. The
idea is to lump all the input and output-related non-
linear currents together, as shown in Fig.2b. Now
the designer can again clearly recognize the effects
of input and output related conductive or capacitive
non-linearities.

Building the equivalent distortion current mod-
el is straight-forward. HB simulation is run, and
terminal distortion current spectra Id, Is and Ig are
recorded. Then equivalent current sources are fitted
so that the terminal distortion currents are correctly
modeled by these imaginary distortion sources.
These sources are fitted using the spectra of termi-
nal currents and intrinsic node voltages.

Even in a lumped model the terminal distortion
currents consist of distortion generated in several
sources. For example, the current in the drain ter-
minal comes from the gm-element Ids(vgs,vds),
and drain charge Qds(vgs,vds), both of which are
controlled by intrinsic vgs and vds voltages. More-
over, the current from Qds is proportional to the
tone frequency , while Ids has a transit delay t
that rotates the phases of the tones by exp(-jt).
Hence, id would be described as

, (1)

id i= gm iqds+

diag e j–  gmpoly vgs vds =
diag j  qdspoly vgs vds +
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where diag() is a diagonal matrix,  is the fre-
quency of a given tone, and gmpoly() and qdspo-
ly() are model function matrices. In the model
function matrices each row corresponds to one fre-
quency in the spectrum, and each column corre-
sponds to one vgsi*vdsj product term in the
polynomial model. 

Similar equation can be written for the gate cur-
rent ig:

, (2)

where gpipoly() corresponds to the possible
conductive part of the input current (needed in
BJTs) and qgspoly() models the current caused by
the input charge.

Solving the polynomial coefficients from (1)
has some technical challenges. Currently, VoHB
has igm and iqds available separately, and can fit
the two polynomials independently. This keeps the
number of unknowns in some bounds. In a lumped
model we must fit (1) simultaneously, which in-
creases the number of unknown coefficients. As we
can fit only as many coefficients as there are equa-
tions this approach may not be possible using a 1-
tone spectrum, but we must use 2- or 3-tone excita-
tions. The jemphasis also means that the effect of
capacitive lower harmonics is attenuated, and more
easily buried underneath the effect of conductive
non-linearities. Second, the frequency response di-
ag(j) of capacitive current is known a priori, but
the transit delay tau of the ids source is not neces-
sarily known, if we want to keep the analysis inde-
pendent of the device models. Hence, tau needs to
be found by iterating (1). Third, the above only
gives the equivalent polynomials that can be used
to calculate the nonlinear distortion currents iNL.
Addition to this, we need to build the linearized cir-
cuit model to propagate the currents to a given
node. For this reason we also need to find linear
models for all VCCS elements in the original mod-
el. 

As an example, we took the MET model [5] of
Freescale’s LDMOS power transistor MRF21030.
Its output drain current consists of currents from
three sources: the gm source Ids(Vgs,Vds), drain
charge Qds(Vds), and gate-drain charge Qgd(Vgd).
Ids strongly dominates the total drain current, and
Qgd is insignificant. In a simple example, we tried
to model total drain current Id as a sum of Ids +

IQds. The combined model matrix is very badly ill-
conditioned (cond ~3e13), and Qds fits poorly.
Much better results was obtained by iterating a cou-
ple of times in a loop, where Ids was first estimated,
and substrated from Id before fitting IQds. This re-
duces the order of the fitted system and improves
especially the fitting of the capacitive currents that
are buried underneath the dominating Ids current.
The condition number of the Ids fitting matrix
drops to ~ 1e7, which is mostly set by the heavy
correlation betweenVgs and Vds signals.

Fig. 1  a) Transistor pi-model, b) example structure that
may result when automatically generated from a Verilog-
A source.

Fig. 2  a) Distortion current sources next to each VCCS,
b) lumped distortion current sources.
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Summary. To simulate the diffraction of planar waves by
periodic surface structures, Huber et al. [2] have proposed to
combine a Fourier-mode expansion over the half space with
a finite element approximation of the electric field close to
the surface. We analyze a slight modification of this mortar
method and discuss an application to an inverse problem in
scatterometry. In particular, we present a shape derivative
formula for the derivative with respect to geometry param-
eters.

1 Boundary Value Problem for Gratings

Suppose the space R3 is filled with two materials sep-
arated by an interface Γ , which is a small perturbation
of the x3 = 0 plane and which is 2π-periodic in the xl
directions for l = 1,2. Furthermore, suppose the ma-
terial below Γ is perfectly conducting and that in the
domain Ω above Γ is lossless. To compute the diffrac-
tion of a time-harmonic plane wave Ein incident on Γ

from above, we have to solve

∇×∇×E− k2 E = 0 on Ω , (1)
ν×E = 0 on Γ , (2)

E(x)−Ein(x) = ∑
n∈Z2

Eneivn·x for x3>b. (3)

Here ν is the unit normal vector on Γ , b is a fixed x3
coordinate greater than those of Γ , and vn are the vec-
tors of the upward radiating (plane wave and evanes-
cent) Fourier modes.

2 Mortar Method

It is natural, to approximate E for x3 > b by Ein plus
a Fourier-mode expansion E+ like that on the right-
hand side of (3). In the domain between the artificial
surface Γ ′b := {x ∈ R3 : x3 = b} and Γ , an FE approx-
imation with quasi-periodic edge elements is possible.
Clearly, the FEM can be restricted to the cell of peri-
odicity Ωb := {x ∈Ω : x3 < b, 0≤ xl ≤ 2π, l = 1,2}
and the mode expansion to the bounded upper domain
Ω

+
b := {x∈R3 : b≤x3≤b+1, 0≤xl≤2π, l=1,2} or

even to Γb := {x∈Γb : 0≤xl≤2π, l=1,2}. Following
the idea of Huber et al. [2], we couple the two approx-
imations by a mortar technique. More precisely, we

replace the boundary value problem by the following
variational equation

a
(
(E,E+),(V,V+)

)
=−a

(
(0,Ein),(V,V+)

)
,

required for all V∈H(curl,Ωb) and V+∈H(curl,Ω+
b ),

where the sesquilinear form a is defined as the sum of∫
Ωb
{∇×E ·∇×V+E ·V}

−
∫

Γb
∇×E+ ·ν×V+

∫
Γb

ν×(E−E+) ·∇×V+

plus a certain sesquilinear form corresponding to a fi-
nite rank operator. We get (cf. [4])

Theorem 1. The operator corresponding to the vari-
ational equation is Fredholm of index zero. The so-
lution of the sesquilinear form is equivalent to the
boundary value problem (1)-(3).

Unfortunately, there are examples of gratings such
that the solution of the boundary value problem is
non-unique. However, the scattered (non-evanescent)
plane wave modes are always unique (cf. [4]).

Using Theorem 1, the justification of a coupled
Fourier-mode-FE method should be possible (com-
pare [1]). Simply, the E and V are to be replaced by
edge finite elements and the E+ and V+ by truncated
Fourier-mode expansions. Of course, the variational
form is to be modified slightly. Frequently, in practical
computations, only a small number of the Rayleigh
coefficients En (cf. (3)) differ essentially from zero.
Thus only a few terms in the Fourier-mode expansions
are needed.

3 Inverse Problem in Scatterometry

To evaluation the fabrication process of lithographic
masks, simple periodic or biperiodic structures must
be measured. Using scatterometric techniques, the
corresponding part of the surface is illuminated by a
ray of laser light. The efficiencies (intensities) of the
scattered plane wave modes are measured. Finally, a
biperiodic surface structure is sought, the efficiencies
of which coincide with the measured data, i.e., an in-
verse problem is to be solved.

Though this problem is severely ill-posed, we are
looking for small deviations of the surface structure
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2

from the fabrication standard, i.e., for surfaces de-
scribed by a small number of geometry parameters.
The reduction to these parameters is like a regulariza-
tion of the inverse problem, and the determination of
the parameters with high accuracy should be possible.
Note that we do not discuss the effect of modeling er-
rors or random perturbations.

The numerical solution of the inverse problem
can be realized minimizing a functional F (E), where
F (E) is some measure for the deviation of the mea-
sured efficiencies and the efficiencies of the scattered
field E corresponding to a grating structure with given
parameters. Although the gratings are not perfectly
conducting anymore, the scattered field E can be com-
puted by an FEM similar to that of Sect. 3. Opti-
mization schemes like the Gauß-Newton method or
the Levenberg-Marquardt algorithm can be applied.
However these local optimization routines require the
Jacobian of the operator, mapping the set of geometry
parameters to the vector of efficiency values. In other
words, we need formulas for the derivatives of E with
respect to the geometry parameters.

4 Shape Derivative

In the case of periodic gratings, i.e., for the two-
dimensional Helmholtz equation, the classical meth-
ods for shape calculus apply. Unfortunately, for the
time-harmonic Maxwell equation (1), an analogous
procedure is not possible. Indeed, the underlying en-
ergy space H(curl,Ωb) is not invariant under the trans-
formations corresponding to a change of the geometry
parameter.

On the other hand, in our optical applications the
magnetic permeability µ is constant. For this case, it
is known that the magnetic vector H is piecewise in
the Sobolev space H1. Using this fact, the shape cal-
culus applies to the derivative of H. Switching now
from the magnetic vector to the electric field, we can
derive a formula for the derivative w.r.t. a geometry
parameter p (cf. [3])

∂pF (E) = Re a1(E,Eadj). (4)

Here a1(E,F) is a special sesquilinear form depend-
ing on the L2 functions E, F , E, ∇×E, and ∇×F .
The field E in (4) is the actual electric solution of the
time-harmonic Maxwell equation. The field Eadj is the
solution of the adjoint equation. In other words, Eadj
is the solution of an equation with the adjoint FEM
matrix and with a right-hand side depending on the
functional F .

In a numerical experiment, we have implemented
a version of (4) discretized by FEM. The numerical al-
gorithm for the inverse problem mentioned in Sect. 3,
including the shape derivative based on (4), converges
well.
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Summary Evaluating the performances of an 
optimization algorithm is more complex in the case of 
multi-objective optimization problems than single-
objective ones. In the former case, the optimization 
aims to obtain a set of non-dominated solutions close 
to the Pareto-optimal front, well-distributed, maximally 
extended and full filled. This paper presents a new 
quality indicator encompassing the aforementioned 
goals. The quality indicator is then used to select a 
suitable algorithm for the multi-objective optimization 
of a magnetic shield in an induction heating system. 
 
 
1 Introduction 
 
The optimization results provided by a multi-
objective algorithm are, usually, a set of non-
dominated solutions (called approximation set in 
the decision space and Pareto approximation 
front in the objective functions space).  

The main goal of such algorithms is to 
provide an approximation set matching the 
Pareto-optimal set.  

The notion of performance of an optimization 
algorithm involves the quality of the solutions 
that it is able to produce and the computational 
effort required to provide such solutions.  

The definition of quality is a complex topic to 
deal with in the case of multi-objective 
optimization problems. A good optimization 
algorithm should [1]: 
− minimize the distance from the Pareto 

approximation front to the Pareto-optimal 
front;  

− obtain a good (usually uniform) distribution 
of the solutions found;  

− maximize the extension of the Pareto 
approximation front, i.e., for each objective, a 
wide range of values should be covered by the 
non-dominated solutions; 

− maximize the “density” of the Pareto 
approximation front, i.e. is desirable a high 
cardinality for the approximation set.  
 In literature, there are different methods that 

assign a quality indicator or a set of quality 
indicators that are a measure of the 

aforementioned goals and, usually, a combination 
of them is used in order to evaluate the goodness 
of a multi-objectives optimization algorithm [2]. 

In this paper, a new unary quality indicator, 
called Degree of Approximation (DOA), is 
presented. It takes into account all the goals listed 
before. DOA was then helpful for the choice of 
the optimization algorithm more suitable to 
perform the multi-objective optimization of a 
magnetic shield. 
 
 
2 Degree of Approximation indicator  
 
DOA is a distance-based unary quality indicator 
that also encompasses the distribution, the 
extension and the cardinality of a Pareto 
approximation front.   

In detail, for a Pareto front approximation set 
A, DOA is computed as described in the 
following.  

First, given a solution i belonging to the 
Pareto-optimal front (POF), the sub-set of A 
containing the solutions dominated by i, Di,A, is 
determined. Hence, if the number of elements 
belonging to Di,A is not null (|Di,A|>0), for each 
approximated solution a ∈ Di,A is computed the 
Euclidean distance dfi,a (see Fig.2) between a and 
i as: 

 [ ]∑
=

−=
n

k
ikakai ffdf

1

2
,,,

 (1) 

where n is the number of objective functions, 
akf , is the value of the k-th objective function of 

approximated solution a, ikf , is the value of the 
k-th objective function of optimal solution i. 

Then the parameter di,A is computed: it is the 
Euclidean distance between i and the nearest 
approximated solution belonging to Di,A: 
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Another quantity, rfi,a is computed as:  
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it is a ‘reduced’ distance between i and a not 
dominated solution a of A. 

 Then considering the solutions of A not 
dominated by i. the parameter ri,A, is computed 
similarly to di,A: 
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,,,
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Finally, defining, for each i ∈ POF, the value 
si,A as the minimum between di,A and ri,A, the new 
unary quality indicator, DOA, is computed as: 

 ∑
=

=
POF

i
Ais

POF
ADOA

1
,

1)(
 

(5) 

The smaller is DOA the better is the Pareto 
approximation front. 
 
 
3 Optimization of a magnetic shield 
 
The DOA quality indicator was used to compare 
the Pareto approximation fronts given by two 
different multi-objective optimization algorithms 
NPAEP [3] and NSGA II [4] applied to 
mathematical benchmark problems for which the 
true POF was known. In particular, Table 1 
shows the results obtained by NPAEP and NSGA 
II for the Fonseca and Fleming problem [5] 
(FON) using only 1000 and 2500 objective 
function evaluations. The results are the DOA 
mean values (over one hundred trials): the lower 
the index is the better the algorithm works.  

 
Table 1.  Results for the FON problem. 

vn  NPAEP NSGA II 

1000 0.006427 0.018121 
2500 0.003008 0.006400 

 
NPAEP works better than NSGA II, it is worth 

pointing out that NSGA II needs 2500 fitness 
evaluations to reach results comparable to those 
of NPAEP. For all the mathematical benchmark  
problems  with  few design variables and for 
which the true POF was regular, NPAEP shown 
the same behaviour. NSGA II outperforms 
NPAEP when the number of design parameters 
increases.  

 
Fig. 1.  POF provided by NPAEP. 

 
Hence NPAEP was chosen for the optimization 

of the shielding of the axisymmetric induction 
heating system optimized in [6] in which the 
different objectives were combined in a single 
objective function. Two design parameters are 
used: the semi-height and the outer radius of the 
steel shield; while the two optimization targets to 
minimize, i.e. the mean magnetic induction Bm in 
the target area and the power losses Ws in the 
shield, are kept distinct. Here are reported the 
results of the passive shield optimization only. 
Figure 1 shows the POF obtained by NPAEP 
after 2000 numerical simulations carried out by 
means of FEM-DBCI [6]. The POF is well-
distributed and full filled thus the decision maker 
has several solutions to choose from.  

More details and results will be given in the 
full contribution. 
 
 
References 

 
1. E. Zitzler, K. Deb, L. Thiele, “Comparison of 

multiobjective evolutionary algorithms: empirical 
results”, Evol. Comp., vol. 8, n.2, pp.173-195, 2000.  

2. D. A. Van Veldhuizen, G. B. Lamont,  A. Zalzala, 
R. Eberhart, “On measuring multiobjective 
evolutionary algorithm performance”, IEEE 
CEC2000,  vol. 1,  pp.204-211, 2000.  

3. E. Dilettoso, S. A. Rizzo, N. Salerno, “Niched 
Pareto-Archived Evolutionary Programming for 
Multi-Objective Electromagnetic Optimization”, 
17th IEEE COMPUMAG, Florianopolis (BR), 2009. 

4. K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, “A 
fast and elitist multiobjective genetic algorithm: 
NSGA-II”, IEEE Trans. Evolutionary Computation,  
vol. 6, no. 2, pp. 182-197, 2002. 

5. C. M. Fonseca, P. J. Fleming, “Multiobjective 
genetic algorithms made easy: Selection, sharing 
and mating restriction,” IEE Genetic Alg. in Eng. 
Syst.: Innovat. and Appl., pp. 45–52, Sep. 1995.  

6. S. Alfonzetti, E. Dilettoso, S. A. Rizzo, N. Salerno, 
“Stochastic Optimization of Magnetic Shields in 
Induction Heating Applications by means of FEM-
DBCI”, IEEE Tr.Mag., vol.45, pp.1752-1755, 2009. 

198 SCEE2012



Accurate and efficient FEM simulations of circular spiral planar 
inductors 
 

S.A. Rizzo1, N. Salerno1 and S. Sindoni1 
 
1Dipartimento di Ingegneria Elettrica, Elettronica e Informatica - Università di Catania - Catania,  Italy 
sarizzo@dieei.unict.it, nsalerno@dieei.unict.it and ssindoni@dieei.unict.it 
 

 
 

 

Summary. In this paper an efficient methodology to 
simulate electromagnetic devices involving circular 
spiral planar windings is illustrated. The numerical 
simulations are carried out by means of 2D 
axisymmetric finite element (FE) analyses to solve 
electrostatic and magneto quasi-stationary (MQS) field 
problems taking into account all parasitic effects, in 
order to obtain accurate results with a reduced 
computational effort. 
 
 
1 Introduction 
 
One of the more pressing objective of technology 
is to improve performances of electrical and 
electronic devices reducing their dimensions, 
weight, power consumption and cost. To achieve 
this goal miniaturization of devices components, 
increase of signals frequency and easy 
manufacturing are mandatory. 
Integrated planar electromagnetic devices are 
widely applied and, in particular, spiral planar 
windings can be used as integrated inductors for 
RF systems [1], as antennas for wireless 
transmissions, in RFID applications, as HF 
transformers [2], for contactless energy 
transmission systems or as EMI filters [3]. 
In this paper, the performances of coreless planar 
spiral windings (CPSW) used as integrated planar 
EMI filter for limiting conducted emissions are 
investigated by means of numerical simulations. 
The simulations where carried out by means of 
FE analyses following an efficient strategy, 
described in section 2, that allows to obtain 
accurate results with a reduced computational 
effort. A prototype was realized and comparison 
between simulated and measured results were 
made as shown in section 3. 
 
 
2 Finite element strategy 
 
Electromagnetic planar devices are affected by 
several parasitic effects that influence their 
operation and performances. The increase of 
signal frequency produce an increase of the 
windings  resistance  due to the skin effect and to  

 
 

Fig. 1. Axisymmetric section of the prototype and 
geometric parameters. 

 
 

the proximity of other conductors; the capacitive 
effects, that are negligible at low frequency, must 
be considered and they determines the frequency 
response of the device and its resonances. 
In this work, a coreless EMI filter made by two 
circular spiral planar inductors drawn on a double 
face printed circuit board (PCB) is analyzed. To 
simulate the planar EMI filter, FE analyses were 
preferred to analytical models: since these models 
are often too simple and inaccurate especially to 
determine distributed turn-to-turn capacitances 
and the resistance in presence of skin and 
proximity effects. In order to consider all these 
effects, a full wave 3D FE analysis should be 
necessary but it requires a huge computational 
effort particularly if conductors must be 
discretized by means of a fine mesh.  
In this work, authors present a strategy to carry 
out accurate FE simulations with an acceptable 
computational cost in terms of memory usage and 
CPU time. 
This strategy consists in the following steps: 
1) the real 3D geometry of the filter is 

approximated with an axisymmetrical one as 
shown in Fig. 1; 

2) an electrostatic FE analysis is carried out by 
mean of FEM-DBCI [4] in order to calculate 
the matrix of capacitances [5] among all 
turns; 

30 
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0.2 mm 0.2 mm 

20 mm 

0.4 mm 

35 µm 
1 2

εr=4.4 
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Fig. 2. FE mesh near conductors. 

 
 
3) MQS  analyses [6]  are then  performed  in 

the range 1÷30 MHz and the capacitive 
contribution is taken into account by means 
of concentrated capacitors connected 
between each couple of turns (circuit 
elements interface with finite elements). 

Steps 2 and 3 were performed by means of a 
script that launched the FE analyses 
consecutively: first the electrostatic solution and 
then the MQS analyses in which all the capacitors 
are automatically inserted between each pair of 
turns.  
 
 
3 Simulation results 
 
Figure 2 shows a detail of the FE mesh for 
electrostatic analysis: in this case conductors are 
not discretized and a total of about 13,500 second 
order finite elements were used. In the MQS 
analyses conductors should be discretized 
according with penetration dept in order to have 
accurate results: to avoid the use of an adaptive 
meshing, the mesh with the right accuracy at 30 
MHz was used for all the frequencies (a total of 
about 75,000 second order finite elements were 
employed). 
All the computations were performed by means 
of ELFIN, an FE code developed by the authors 
[7]. The simulations runs on a PC (Pentium IV, 
3,2 GHz, 4Gb RAM): they take about one 
hundred minutes. On the same machine it was 
impossible to complete a full wave 3D FE 
analysis of the real device, also using a coarse 
mesh inside conductors. 
A prototype was realized on which several 
measures were performed.  

 
Fig. 3. Simulated (continuous line) and measured 

(marks) transfer gain for the CM filter. 
 
Figure 3 shows a comparison between simulated 
and measured transfer gain for the CM filter: 
numerical results are in good agreement with 
measures.  
Similar results were obtained for the DM filter. 
More details and results will be given in the full 
contribution. 
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Summary. We use a Stroud-based collocation method to
analyze the parameter behavior of the time-harmonic Max-
well equations and reduce the computational costs by ap-
plying model order reduction to the system matrices.

1 Motivation

During the design process of semiconductor struc-
tures, simulations of new micro and nano scale sys-
tems are essential due to, e. g., the expensive produc-
tion of prototypes. An important aspect is the ongo-
ing miniaturization of the structures on the one hand
and the increase in the working frequencies on the
other hand. The high density of electric conductors
induces parasitic effects, e. g., crosstalk, which have
to be considered already in the design stage. There-
fore, the exact knowledge of the semiconductor struc-
tures and the surrounding electromagnetic (EM) field
is necessary.
Another effect, which plays a no longer negligible
role, is the variation of the feature structure size caused
by inaccuracies of the resolution during the lithogra-
phy. To consider these variations in the simulation,
models with parametric uncertainties are required. A
variational analysis of the effect of these uncertain-
ties on the EM field requires methods for uncertainty
quantification (UQ) [4, 6]. For this purpose, we will
employ non-intrusive approaches as they allow the
use of EM field solvers for deterministic problems
without accessing the source code. Possible choices
are Monte Carlo and stochastic collocation. Here we
will employ the latter due to their faster convergence.
Still, UQ via stochastic collocation requires numer-
ous full-order EM field solves which can be a time-
consuming task for complicated 3D geometries. It is
thus our goal to combine this approach with model or-
der reduction methods (MOR) for the Maxwell equa-
tions to reduce the computational cost, where the
reduced-order model needs to preserve the statisti-
cal properties of the full-order model. All these prob-
lems are addressed within the research network Model
Reduction for Fast Simulation of New Semiconduc-
tor Structures for Nanotechnology and Microsystems
Technology (MoreSim4Nano), see [5]. Figure 1 shows
a coplanar waveguide which serves as a benchmark

Fig. 1. Coplanar waveguide.

within MoreSim4Nano and for which we show some
numerical results in Section 4.

2 Stochastic Collocation for EM Field
Computations

The system of equations describing the EM field are
Maxwell’s equations

∂t(εE) = ∇×H−σE−J
∂t(µH) =−∇×E
∇ · (εE) = ρ

∇ · (µH) = 0,

with the electric field intensity E, the magnetic field
intensity H, the charge density ρ , the impressed cur-
rent source J, and material parameters ε = εr ·ε0 (per-
mittivity), µ = µr · µ0 (permeability), σ (electrical
conductivity). For simplification, we work with the
time-harmonic form

∇× (µ−1
∇×E)+ iω σ E−ω

2
ε E = iω J, (1)

on the space X = {E ∈ H0
curl |∇ · (εE) = ρ}.

Up to now, we consider the material parameters εr, µr,
and σ as uncertain. For the examination of their influ-
ence on the statistical behavior of the solution E we
use stochastic collocation [1] with Stroud interpola-
tion points [2].

2.1 Stochastic Collocation

Collocation methods rely on interpolation. The idea is
to approximate high-dimensional integrals, e. g., the
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expectation value of our solution E, by an (efficient)
quadrature rule

E(E) =
∫

Γ

E(ξ ) f (ξ )dξ ≈
n

∑
i=1

E(ξi)wi.

Here Γ is the image of the probability space under
the probability measure, f is the unknown probability
density function of E, ξi are the n interpolation points
and wi are the associated weights.

2.2 Stroud Integration

The interpolation formula used in our algorithm was
introduced in 1957 by A. H. Stroud [7] and yields
either beta or normal distributed interpolation points
which are weighted by 1/n, where n is the number of
interpolation points as in Sec. 2.1. Though we need
εr, µr > 0 and σ ≥ 0, we suppose them to be log-
normal distributed and use the exponential of the nor-
mal distributed Stroud points as interpolation points.

3 Model Order Reduction

The discretization of (1) leads to the following system

µrAµ0e+ εrAε0 ë+σAė = Bu,

y =Ce,

where e is the discretized electric field, Aµ0 , Aε0 and
A are the parameter independent system matrices in
RN×N , u, y define the inputs/ outputs, and B,C spec-
ify the input/ output behavior. Here N is the number
of grid points in G and large. This system is then re-
duced, e. g., by means of rational interpolation meth-
ods as in [3] and we achieve a reduced system of the
form

µrÂµ0 ê+ εrÂε0
¨̂e+σ Â ˙̂e = B̂u,

ŷ = Ĉê,

where Âµ0 , Âε0 , Â ∈ Rr×r with r � N and ‖y− ŷ‖
small.

4 Numerical Results Concerning the
Stochastic Collocation Approach

As a benchmark we consider a coplanar waveguide
with dielectric overlay, see Figure 1. The model con-
sists of three perfectly conducting striplines situated
at a height of 10mm in a shielded box with perfect
electric conductor (PEC) boundary. The system is ex-
cited at one of the discrete ports and the output is
taken at the other one.
Below a height of 15mm there is a substrate with
ε1

r ≈ 4.4 and σ1 ≈ 0.02S/m, above there is air with

ε2
r ≈ 1.07 and σ2 ≈ 0.01S/m, while µr ≈ 1 within

the whole box. The variance of each parameter is ap-
proximately 1% of the expected value.
The system is treated as a system with 5 uncertain pa-
rameters, which leads to the affine discretized form

µrAµ0e+(ε1
r A1

ε0
+ ε

2
r A2

ε0
)ë+(σ1A1 +σ

2A2)ė = Bu,

y =Ce.

The discretization is done in FEniCS by use of Nédé-
lec finite elements and the Stroud-based collocation
is implemented in MATLAB R©. Since the used dis-
cretization has only 18755 degrees of freedom, there
is no model order reduction used up to now.
The Stroud-based collocation uses only 10 support-
ing points and the computation requires less than a
minute. To verify the accuracy, the results are com-
pared with a Monte Carlo simulation which oper-
ates on 10000 interpolation points. This takes several
hours. Using the frequency ω = 0.6 · 109 we achieve
the following relative errors for the expected value of
e and y

errrel,E(e) = 0.0038% and errrel,E(y) = 0.0042%.

Considering the fact that we use only 10 Stroud points
the results are satisfactory. To achieve more accuracy
one could use, e. g., a lot more sparse grid points,
which would be much more expensive. For this reason
and for systems of higher dimension we need MOR.
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Summary. In this paper we derive a new stepwise embar-
rassingly parallel, globally convergent algorithm for linear
and non-linear electrostatic problems. It is based on a new
interpretation of the classical finite element formulation.
We show problems with cellwise linear materials and prove
convergence of the proposed method.

1 Overview

Nodal search finite element methods have been de-
rived in [1] using a non-Galerkin approach. It allows a
natural decoupling of finite elements similarly to dis-
continuous Galerkin approaches [2]. This paper will
lay out this algorithm using a variation of the usual
variational Galerkin method based finite element ap-
proach (see e.g. [3]) for equation 1.

div(εgrad(φ)) = ρ (1)

Using the Galerkin finite element approach (see e.g.
[3]) has the advantage that it is easier to apply, broadly
known, and seems to yield better conditioned sys-
tems, although it is less general then the initial ap-
proach in [1].

1.1 A Special Finite Element Representation

The proposed algorithm is based on a Lagrange finite
element formulation, in which the resulting problem,
after using the Galerkin approach, has the form

PT APα =−PT Aλ0 , (2)

where A is a block diagonal matrix, whose sub-matrices
describe the local finite element stiffness matrices for
associated single mesh cells, λ0 is a vector contain-
ing boundary data, α is the vector of global degrees
of freedom (dof), and P is a very sparse incidence
matrix mapping global to local degrees of freedom.
The mathematical details of this are discussed in the
full paper. Since A is positive definite and symmetric,
solving equation 2 is equivalent to solving

(λ0 +Pα)T A(λ0 +Pα)
!
= min . (3)

Equation 3 is solved directly, using a direct search op-
timization algorithm, that changes only one global de-
gree of freedom in each step. The used algorithm is

p qr

Fig. 1. Schematic sketch of a 2D Lagrange FEM mesh with
affected cells and independent degrees of freedom. The af-
fected cells of the dof associated with node p are blue, the
ones associated with node q are red, and the ones associated
with the node r are dotted. The set {p,q} is a set of inde-
pendent degrees of freedom, while the set {p,r,q} is not.

a simple generating set search method as discussed
in [4]. Further in the nonlinear case A depends on α

which requires some additional care. This approach
results in an algorithm with global convergence, even
in many non-linear cases. The mathematical details
and constraints are discussed in the full paper.

2 Nodal Search

The nodal search algorithms exploits the fact, that a
change in a global degree of freedom only affects a
very local area of an approximation function build
from finite elements. The basic idea is to find first, for
every degree of freedom, the area where a change in
the degree of freedom actually has an effect on the
associated approximation function. This is done by
finding the affected cells, as shown in Fig. 1, of ev-
ery global degree of freedom.

Next, the algorithm determines a decomposition
of all global degrees of freedom into a set of sets of
independent degrees of freedom. Where independent
means that the degrees of freedom have no affected
cells in common, as shown in Fig. 1. A rigorous math-
ematical analysis of this decomposition approach is
provided in the full paper. Last, an iteration over nodal
search steps is done which terminates when the step-
length becomes lower then a given threshold.

A nodal search step tries to improve the value
of one node’s dof. This leads to a formulation that
is similar to a multiplicative Schwarz method and in
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fact is, for first order finite elements, a multiplicative
Schwarz method, which is shown in the full paper.
Further in the first order case it is similar to the al-
gorithm in [5] as well. The computation of a nodal
search step obviously depends only on a few degrees
of freedom. A nodal search step on node l improves
an existing approximation described by α to a new
better approximation αnew via αnew = α +θlel where
the nodal search step length θl can, for cellwise linear
isotropic materials, be computed by

θl =−
ξl +vT

l α

χl
, (4)

where ξl ,χl are real numbers and vl is a sparse vector
for all l. All values i.e. ξl ,χl and vT

l can be computed
in parallel using λ0,P and A.

Further, the computation of all θl in a set of inde-
pendent degrees of freedom is embarrassingly paral-
lel, which is proven in the full paper. Thus, iterating
through all sets of a decomposition into sets of inde-
pendent degrees of freedom, yields a stepwise embar-
rassingly parallel algorithm.

3 Test Implementation and Results

The algorithm has been implemented with OpenMP
parallelization. This test implementation uses second
order tetrahedral elements, and an ad-hoc iterative
mark and sweep algorithm to create the required de-
composition of degrees of freedom into sets of inde-
pendent degrees of freedom. The algorithm has been
tested using the real world problem shown in Fig.2.
The details of the model are described in [6].

Fig. 2. A real world insulator model for testing, meshed us-
ing second order tetrahedrons with about 4.8 million nodes.

These results show, that the algorithm does not
only work in theory, but in practice as well. The re-
sults show that the convergence is slow but secure
even without preconditioning on ill conditioned sys-
tems. Its speed, of course, depends on the size of the
problem and the amount of parallel processors. Thus
a variant of this algorithm, e.g. extended by a multi-
grid scheme, might become a good default algorithm,
on GPGPU systems, similarly to the approach in [7].

Fig. 3. A result for the geometry in Fig. 2 visualizing
the electric potential by color and equipotential surfaces
by black lines. Computation took about 10h on a 48core
(2.8GHz AMD Opteron) machine.

4 Outlook

We have presented a new massively parallel algorithm
for solving electrostatic problems. The full paper pro-
vides a rigorous mathematical treatment of the algo-
rithm derivation and convergence with a lot more ref-
erences. Further, the above and additions numerical
results are discussed in detail, regarding convergence,
speed and stability.
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The Reconstruction of Shape with 3-Step Modeling Strategy
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Summary. Three step modeling strategy is newly devel-
oped to improve the performance of Artificial Neural Net-
work through Knowledge Based Techniques. This strat-
egy provides not only more accurate results but also time
efficiency especially in complex modeling problems. In
this study the reconstruction of shape obtained from mea-
surements of scattered electromagnetic fields is considered.
Multi Layer Perceptron is chosen for realization of Artifi-
cial Neural Networks. In order to demonstrate the efficiency
of three step modeling, the reconstruction of shape for two
different geometries are considered.

1 Introduction

Artificial Neural Network (ANN) is a well known ap-
proach in modeling problems where only input-output
data is available. Data generation, number of neurons
and number of iterations are important features that
effect the accuracy of ANN. Since for complex mod-
eling problems it is difficult to have input-output nec-
essary data, modeling is hardly applicable for such
problems.

Knowledge Based Techniques were developed to
reduce complexity of modeling problem by using the
knowledge about the considered problem [2,4]. Three
step modeling strategy further improves the efficiency
of knowledge based techniques. This strategy uses
same training data and same number of neurons, but
generates more accurate results and less time consum-
ing than the conventional ANN modeling.

In this work, the main contribution over [1] is to
use MLP as ANN structure. MLP, Prior Knowledge
Input (PKI) [4] and Prior Knowledge Input with Dif-
ference (PKI-D) [2] are used in first (M-1), second
(M-2) and third (M-3) steps of 3-step modeling strat-
egy [1], respectively. In order to show the efficiency of
the method inverse scattering problem is considered.

2 3-Step Modeling Strategy

3-step modeling strategy provides gradual improve-
ments during modeling. For this purpose, it firstly uti-
lizes ANN structure. After training process is com-
pleted, this model is named model-1 (M-1). M-1 gen-
erates prior knowledge for PKI model. PKI utilizes
response of M-1 and complexity of modeling prob-
lem is reduced via this prior knowledge. After training

process is completed, this model named model-2 (M-
2). Finally PKI-D utilizes M-2 response both at input
and output. Therefore M-2 is used to reduce complex-
ity and it narrows the output range using difference
between original response and M-2 response.

Each step uses same number of iterations and to-
tal number of iterations and neurons are the same as
in conventional ANN model. This strategy gradually
improves accuracy during three steps and total time
consumption is always less than using conventional
ANN model.

Modeling steps and necessary formulations of 3-
step modeling strategy are given as follows:

• Step-1:
Training ANN and calculate training response
xM−1 = fANN

(
Yf
)

• Step-2:
Training ANN using extra knowledge YM−1 and
calculate training response
xM−2 = xPKI = fANN

(
Yf ,xM−1

)
• Step-3:
Training ANN using extra knowledge YM−2
xM−3 = xPKI−D = fANN

(
Yf ,xM−2

)
+ xM−2

• Test error:
Calculate test data using M−1, M−2 and M−3
and find test error for 3-step modeling

Mean Error = 1
N ×∑

N
i=1
|Xoriginal,i−Xmethod,i|

Xoriginal,i

Max Error = max
i

{
|Xoriginal,i−Xmethod,i|

Xoriginal,i

}
After training process is completed for 3-step model-
ing as shown in Fig.1, each model is used to calculate
test error. This error performance is useful to compare
this strategy with conventional modeling technique.

3 Inverse Scattering Problem

The direct scattering problems investigate the scatter-
ing fields for a given object. On the other hand, the
aim of inverse scattering problems is to find out the
properties of an object, such as shape, electromag-
netic parameters, position for given scattered fields.
Five Fourier coefficients (one of them is real oth-
ers are complex) are used as inputs and 10 complex
values obtained by measurement points in Fig.2 are
used as outputs of the original model [3]. In this
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Fig. 1. 3-step modeling of inverse scattering problem.
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Fig. 3. The comparing original shape with the shape re-
construction of 3-step model and MLP-ANN model for
geometry-1.

work, number of neurons and number of iterations are
chosen 60*60 for conventional ANN modeling and
15*15, 20*20, 25*25 for the first, second and third
step of 3-step modeling strategy. In total conventional
ANN and 3-step modeling use same number of itera-
tions and neurons. The geometry of inverse scattering
problem is shown in Fig.2. Time consumption is 1.95
sec in M-1, 2.215 sec in M-2 and 2.231 sec in M-
3.Total time consumption of 3-step modeling (6.396
sec) is less than conventional ANN’s (20.187 sec). To
compare test results of 3-step modeling and conven-
tional ANN, 5 randomly generated geometry are ob-
tained. Original shape, the reconstruction of shape ob-
tained from 3-step modeling and conventional ANN
are given together in Fig.3 for geometry−1 and Fig.4
for geometry−2.

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

X
original

X
3step

X
MLP

Fig. 4. The comparing original shape with the shape re-
construction of 3-step model and MLP-ANN model for
geometry-2.

4 Conclusion

Although 3-step model utilizes same number of iter-
ations and number of neurons as conventional ANN,
it generates more accurate results (mean error: %3.7)
in less time than conventional structure (mean error:
%4.2). This efficiency is based on knowledge based
strategy in 3-step modeling. This work demonstrates
the efficiency of this strategy for inverse scattering
problem as well.
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Growing computational capabilities and simulation
tools based on high-order methods allow for complex
shaped plasma devices to simulate the entire nonlin-
ear dynamics of the Vlasov-Maxwell system mod-
elling the particle-field-interactions of a non-neutral
plasma without significant simplifications [4]. Thereby,
new insights into physics on a level of detail that has
never been available before provides new design im-
plications and a better understanding of the overall
physics.

In the field of gyrotron design state-of-the-art fast
codes play a crucial role [2, 6]. While procuring their
rapidity by making strong physical simplifications
and approximations, the correctness of these assump-
tions is not known to be valid for all considered varia-
tions of the geometry and operation setup. Solving the
nonlinear Vlasov-Maxwell system without significant
physical reductions, the self-consistent transient 3D
electromagnetic Particle-In-Cell (PIC) method [1, 3]
can provide better insights into these setups and be-
yond that can serve as validation tool for a fast design
code.

We present a high-order discontinuous Galerkin
method based PIC code with high-order coupling tech-
niques on unstructured grids in a parallelization frame-
work allowing for large scale applications on high
performance computing clusters [7, 10]. We simulate
the geometrically complex gyrotron resonant cavity
and the quasi-optical mode converter of the 170 GHz
gyrotron aimed for plasma resonance heating of the
fusion reactor ITER [5, 9]. A result of our high-order
transient resonator simulations is shown in Figure 1.

Currently we enhance the range of applications
of our PIC-code to rarefied plasma flows in which
particles interaction has to be taken into account, i.e.
collisional phenomena of the Boltzmann integral. Ac-
cording to the nature of these interactions, the Boltz-
mann collision integral has to be approximated with
different appropriate approaches which require their
own numerical model and method. The Direct Simu-
lation Monte Carlo (DSMC) method which has been
adopted and coded is the state-of-the-art approach for
the numerical modeling of short-range elastic elec-

Fig. 1. Bz-field of a 170 GHz gyrotron resonator simulated
with the PIC method on 512 processes.

tron neutral collisions and binary inelastic reactions
like excitation, ionization, dissociation, recombina-
tion, etc. .

The coupling of the DSMC module with the DG-
PIC solver has been carried out and the coupled code
is applied to a variety of discharge problems for val-
idation purposes. Besides collective phenomena from
computations in gyrotrons, we will here further present
and discuss results from plasma streamer simulations
(see Fig. 2). Especially, we will focus our attention
to the avalanche-streamer transition, the streamer for-
mation and the subsequent streamer evolution which
are key mechanisms in the early stage of the discharge
phenomenology.

So far, scientific demonstration calculations for
gyrotron devices and streamers have been performed
[7, 10]. We expect that the growing potential of the
code will enable us to simulate a broad range of ap-
plications also on industrial scale. Besides streamers
and micro and millimeter wave sources, also applica-
tions with electromagnetic vulnerability background,
such as the impact of space weather on satellites, and
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new space propulsion concepts such as the Mini Mag-
netospheric Plasma Propulsion can be considered [8].

Fig. 2. Field and particle distribution from the streamer sim-
ulation on 500 MPI processes with the DG-PIC solver cou-
pled with the DSMC module.
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Summary 

 

The nonlinear autonomous Sprott Case C chaotic 

equations are algebraically simple but can 

generate a complex chaotic attractor. In this 

paper, we propose to realize Sprott Case C 

Equation known well by using CCIIs. Chaotic 

electronic implementation of the Sprott Case C 

attractor was realized using OrCad-PSpice® with 

CCIIs. We gathered a new design which 

advocates a wide band of frequencies and 

prosperously gives the simulation results of 

Sprott Case C Equation. Chaotic graphics were 

just the same as other realizations devised before. 

 

1 Introduction 
 

Up to now, various chaotic systems are 

introduced in[1,7]. Sprott embarked upon an 

extensive search for autonomous three 

dimensional chaotic systems with fewer than 

seven terms in the right hand side of the model 

equations[8]. Several thousands of chaotic cases 

were found by using computer programs. Only 33 

cases are distinct in the point that their functional 

forms are different and not related by a trivial 

transposition of variables. By performing various 

algebraic transformations on these cases, 15 

additional cases were found satisfying for the 

criterions of simplicity that mentioned above. Of 

these total 48 (33+15) cases only 19 (Labeled by 

‘A’ to ‘S’) appear to be distinct in the sense that 

there is no obvious transformation from one to 

another. In these 19 (‘A’ to ‘S’) cases, ‘A’ to ‘E’ 

(five) have five terms and two nonlinearities 

while cases ‘F’ to ‘S’ (fourteen) have six terms 

and one nonlinearity in the right hand side. In this 

search, no case was found fewer than five terms 

and any number of quadratic nonlinearity, which 

shows chaotic behavior. Among these nineteen 

cases, only Case ‘A’ is conservative (volume 

preserving) while others are dissipative flows 

(volume contracting) and shows strange 

attractors.  

This paper focuses on realization of Sprott Case 

C Attractor with CCIIs. Section II presents the 

dynamical analyses of Sprott Case C attractor.  In  

Section III, electronic circuit design and PSpice® 

Simulations of chaotic Sprott Case C system. 

Finally, conclusions and discussions are given. 

 

2 Dynamical analyses of Sprott Case C 

attractor 

 
Following Sprott Case C chaotic system  was 

used for realizing the chaotic circuit. 

 

2

x = y z 

y = x - y 

z =  1 - x

        (1) 

 

Using Matlab-Simulink modeling, xy phase 

portrait of the Sprott Case C system are achieved 

in Figure 1. 

 

 
Fig. 1. x-y phase portrait of Sprott Case C Attractor 

 

3 Electronic circuit design and 

simulation of the Sprott Case C 

attractor with CCIIs 

 
Chaotic differential equations of the Sprott Case 

C chaotic circuit  are given below. 
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Fig. 2. Circuit Schematic of the Sprott Case C attractor 

with CCIIs 
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Fig. 3. Pspice Simulation Result of the Sprott Case C 
attractor with CCIIs (xy-attractor) 
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Summary. This paper reports on the simulation of an on-
load tap-changer in a power transformer. The electric fields
are computed and resulting breakdown voltages are esti-
mated by using the streamer criterion. The environment of
the on-load tap changer its taken into account by model-
ing tap leads in detail as well as transformer windings. The
goal of the investigations is to justify standard design and
test-procedures which assume a low dependency of the in-
terior dielectric properties of the on-load tap-changer on the
surrounding.

1 Introduction

On-Load Tap-Changers (OLTCs) are devices which
permit the change of the turn ratios of transformers,
allowing voltage regulation or phase shifting under
load without interruption.

Power transformers equipped with OLTCs have
been main components of electrical networks and in-
dustrial applications for nearly 80 years [2, 4].

One crucial criterion for the selection of an ad-
equate OLTC for a certain transformer or application
is its insulation level. Generally, the dielectric strength
depends on the whole system, i.e. the transformer, as
well as the connection-leads and the OLTC. However,
usual test-procedures by OLTC manufacturers are not
done within a transformer but on a separate OLTC.
Also during design the influence of leads and wind-
ings on the internal OLTC insulation is usually ne-
glected. This gives rise to further investigations jus-
tifying this approach. Therefore, a typical system is
simulated by computing the electric field and break-
down voltages with and without windings and tap-
leads.

2 Finite Element Simulation

For simulation half of the core and the tap wind-
ings of the transformer phase nearest to the OLTC
are modeled. The OLTC itself is represented by its
lower part—the tap selector. After several simplifica-
tions the CAD-data of the tap selector are directly im-
ported into the simulation software [1]. The leads are
created manually. Finally the transformer tank is built
as a surrounding box.

 

Fig. 1. Magnitude of the electric field of the total arrange-
ment. Red colored parts of the plot are above 1kV/mm.

Here, we consider AC stresses. Hence, the elec-
tric field is computed for the electrostatic case, i.e. we
solve

∇ · (ε ∇φ) = 0 in Ω , (1)

where Ω is the non-conductive domain, applying con-
stant potentials φ = φ0 on Dirichlet boundaries rep-
resenting grounded and stressed electrodes and the
transformer tank.

For the calculation 2nd order, isoparametric finite
elements are used. The result of a computation with
22.6 million unknowns is shown in Fig.1.

3 Dielectric Breakdown Calculation

Breakdown in oil cannot be described by one coher-
ent theory as in gas. To explain the main mechanisms
two basic approaches are used: one is an extension of
gaseous breakdown, the other one assumes that break-
down is caused by bridges of fibrous impurities.

To calculate the breakdown voltage in inhomoge-
neous electric fields different methods can be used,
see e.g. [3,5]. The calculation method we use is based
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2

on the streamer criterion along a critical path C∫
C

α(|E(x)|)dlx ≥ k , (2)

where α is the effective ionization coefficient, E the
electric field and k defines the number of electrons
necessary for breakdown. With an exponential equa-
tion for α and the introduction of a normalized elec-
tric field e(x) := |E(x)|/U , (2) can be solved as in [3]
for the breakdown voltage

Ub = (1mm)1/z ·
(∫

C

(
e(x)
E0

)z

dlx

)−1/z

(3)

with constants E0 = 15kV/mm and z = 4.2. These
constants are derived from measured breakdown data
of uniform fields.

 

Fig. 2. A subset of evaluated critical lines in the tap selector

The streamer criterion (2) has to be evaluated
along critical paths, which for breakdown in oil gaps
are fieldlines starting at electrodes with high electric
field stresses. Since the most critical fieldline does not
necessarily start at a local field maximum many field-
lines have to be evaluated, some of them are shown
in Fig. 2. The most critical path and the associated Ub
is determined by finding the minimum over all calcu-
lated voltages.

4 Influence of the Tap Leads and
Windings

To investigate the influence of the transformer and the
leads on the dielectric strength of the OLTC three dif-
ferent systems are simulated, see Fig. 3. Field values
along several lines parallel to the tap selector axis are
compared. In Fig. 4 field values along two of these
lines are shown. One line represents a region with low,
the other one a region with high electric stresses.

In regions with low fields there is a significant in-
fluence of the transformer and the leads, but in regions
with high field stresses, which are critical concerning
dielectric strength, the differences are maximum 10%.
Regarding the calculated breakdown voltages the de-
viation is even less than 1%.

Fig. 3. Different geometries. Left: Tap selector with leads
and transformer windings. Middle: Tap selector and wind-
ings. Right: Only tap selector

  

Fig. 4. |E| comparing all geometric arrangements, region
with low fields (left), region with high fields (right)

5 Conclusion

It has been shown that for the investigated typical ex-
ample the influence of the transformer and the tap
leads on the internal OLTC insulation is small enough
to neglect them during design optimization and test-
procedures.
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